
Reinforcement Learning in Finance—
From Playing Games to Algorithmic Trading

Dr. Yves J. Hilpisch

QUANTS@DEV WEBINAR

Introduction

http://books.tpq.io

Python & AI for Finance & Trading

http://books.tpq.io

Github Repo with Code Resources:
https://github.com/yhilpisch/rlfinance

Google Colab:
https://colab.research.google.com/github/yhilpisch/rlfinance

Join the Discord Server:
https://discord.gg/uJPtp9Awaj

Follow on Twitter:
https://twitter.com/quants_dev

https://github.com/yhilpisch/rlfinance
https://colab.research.google.com/github/yhilpisch/rlfinance
https://discord.gg/uJPtp9Awaj
https://twitter.com/quants_dev

Reinforcement Learning
—Success Stories

Reinforcement Lerning
—An Introduction
• Tabular Methods
• Finite Markov Decision
Process

• Dynamic Programming
• Monte Carlo Simulation
• Temporal Difference
Learning

• On- & Off Policy
Approximations

• …
• (Deep) Q-Learning

Success Stories about Deep
Learning
and Deep Reinforcement
Learning:
• Self-Driving Cars
• Recommendation Engines
• Playing Atari Games
• Image Recognition &
Classification

• Speech Recognition
• Playing the Game of Go

https://mitpress.mit.edu/books/how-smart-machines-think

RL Success Stories
—Atari Games and

Reinforcement Learning

“We present the first deep learning model
to successfully learn control policies
directly from high-dimensional sensory
input using reinforcement learning. The
model is a convolutional neural network,
trained with a variant of Q-learning, whose
input is raw pixels and whose output is a
value function estimating future rewards.
We apply our method to seven Atari 2600
games from the Arcade Learning Environment,
with no adjustment of the architecture or
learning algorithm. We find that it
outperforms all previous approaches on six
of the games and surpasses a human expert
on three of them.”

Mnih, V. (2013): “Playing Atari with Deep
Reinforcement Learning”. https://arxiv.org/
pdf/1312.5602v1.pdf

https://arxiv.org/pdf/1312.5602v1.pdf
https://arxiv.org/pdf/1312.5602v1.pdf

RL Success Stories
—Go and AlphaGo

“Go-playing programs have been improving at a
rate of about 1 dan/year in recent years. If

this rate of improvement continues, they might
beat the human world champion in about a

decade.”

Nick Bostrom (2014): Superintelligence.

https://deepmind.com/research/alphago/
https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ
https://deepmind.com/blog/alphago-zero-learning-scratch/

RL Success Stories
—Chess, Deep Blue & AlphaZero

“Jump forward another 20 years to today, to
2017, and you can download any number of free
chess apps for your phone that rival any human

Grandmaster.”

“Twelve years later I was in New York City
fighting for my chess life. Against just one

machine, a $10 million IBM supercomputer
nicknamed ‘Deep Blue’.”

“It was a pleasant day in Hamburg in June 6,
1985, … Each of my opponents, all thirty-two
of them, was a computer. … it didn’t come as

much of a surprise, …, when I achieved

“Traditional chess engines —
including the world computer chess
champion Stockfish and IBM’s
ground-breaking Deep Blue — rely
on thousands of rules and
heuristics handcrafted by strong
human players that try to account
for every eventuality in a game. …

AlphaZero takes a totally
different approach, replacing
these hand-crafted rules with a
deep neural network and general
purpose algorithms that know
nothing about the game beyond the
basic rules.”

“In Chess, for example, it
searches only 60 thousand
positions per second in chess,
compared to roughly 60 million
for Stockfish.”

Source: http://deepmind.com

“The amount of training the
network needs depends on the style
and complexity of the game, taking
approximately 9 hours for chess,
12 hours for shogi, and 13 days
for Go.”

https://deepmind.com/blog/alphazero-shedding-new-light-grand-games-chess-shogi-and-go/

Reinforcement Learning
—Basic Notions

Environment
The environment defines the problem at hand. This
can be a computer game to be played or a financial
market to be traded in.

State
A state subsumes all relevant parameters that
describe the current status of the environment. In a
computer game this might be the whole screen with
all its pixels. In a financial market, this might
include current and historical price levels,
financial indicators such as moving averages,
macroeconomic variables, and so on.

Agent
The term agent subsumes all elements of the RL
algorithm that interacts with the environment and
that learns from these interactions. In a gaming
context, the agent might represent a player playing
the game. In a financial context, the agent could
represent a trader placing bets on rising or falling
markets.

Action
An agent can choose one action from a (limited) set
of allowed actions. In a computer game, movements to
the left or right might be allowed actions, while in
a financial market going long or short could be
admissible.

Step
Given an action of an agent, the state of the
environment is updated. One such update is generally
called a step. The concept of a step is general
enough to encompass both heterogeneous and
homogeneous time intervals between two steps. While
in computer games, real-time interaction with the
game environment is simulated by rather short,
homogeneous time intervals (“game clock”), a trading
bot interacting with a financial market environment
could take actions at longer, heterogeneous time
intervals, for instance.

Reward
Depending on the action an agent chooses,
a reward (or penalty) is awarded. For a computer
game, points are a typical reward. In a financial
context, profit (or loss) is a standard reward.

Target
The target specifies what the agent tries to
maximize. In a computer game, this in general is the
score reached by the agent. For a financial trading
bot, this might be the trading profit.

Policy
The policy defines which action an agent takes given
a certain state of the environment. Given a certain
state of a computer game, represented by all the
pixels that make up the current scene, the policy
might specify that the agent chooses “move right” as
the action. A trading bot that observes three price
increases in a row might decide, according to its
policy, to short the market.

Episode
An episode is a set of steps from the initial state
of the environment until success is achieved or
failure is observed. In a game, from the start of
the game until a win or loss. In the financial
world, for example, from the beginning of the year
to the end of the year or to bankruptcy.

Reinforcement Learning
—Q-Learning

Reward Function
The reward function R assigns to each state-action
(S, A) pair a numerical reward.

Action Policy
An action policy Q assigns to each state S and
allowed action A a numerical value. The numerical
value is composed of the immediate reward of taking
action A and the discounted delayed reward — given
an optimal action taken in the subsequent state.

R : S × A → ℝ

Q : S × A → ℝ,

Q (St, At) = R (St, At) + γ ⋅ max
a

Q (St+1, a)

Representation
In general, the optimal action policy Q can not be
specified in closed form (e.g. in the form of a
table). Therefore, Q-learning relies in general on
approximate representations for the optimal policy
Q.

Neural Network
Due to the approximation capabilities of neural
networks (“Universal Approximation Theorems”),
neural networks are typically used to represent
optimal action policies Q. Features are the
parameters that describe the state of the
environment. Labels are values attached to each
allowed action.

“In the mathematical theory
of artificial neural networks,
the universal approximation
theorem states that a feed-
forward network with a single hidden
layer containing a finite number
of neurons can
approximate continuous
functions on compact subsets of Rn,
under mild assumptions on the
activation function. The theorem
thus states that simple neural
networks can represent a wide
variety of interesting functions
when given appropriate parameters;
however, it does not touch upon the
algorithmic learnability of those
parameters.”
—https://en.wikipedia.org/wiki/
Universal_approximation_theorem

http://math.uchicago.edu/~may/REU2018/REUPapers/Guilhoto.pdf

Exploration
This refers to actions taken by an agent that are
random in nature. The purpose is to explore random
actions and their associated values beyond what the
current optimal policy would dictate.

Exploitation
This refers to actions taken in accordance with the
current optimal policy.

Replay
This refers to the (regular) updating of the optimal
action policy given past and memorized experiences
(by re-training the neural network).

gamma
The parameter gamma represents the discount factor
by which delayed rewards are taken into account.

epsilon
The parameter epsilon defines the ratio with which
the algorithm relies on exploration as compared to
exploitation.

epsilon_decay
The parameter epsilon_decay specifies the rate at
which epsilon is reduced.

QUANTS@DEV

Dr. Yves J. Hilpisch
The Python Quants GmbH

tpq.io | qd@tpq.io | @dyjh
@quants_dev

Discord Server
https://discord.gg/uJPtp9Awaj

Twitter Account
https://twitter.com/quants_dev

http://tpq.io
mailto:qd@tpq.io
http://twitter.com/dyjh
https://twitter.com/quants_dev
https://discord.gg/uJPtp9Awaj

