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1.

Explain why Python has become the No. 1 programming language in finance. Provide 7 short (4
bullet points.

Python's popularity in finance can be attributed to various reasons:

Easy to Learn: Python has a simple syntax that closely resembles English, which makes it

easier to learn and read compared to other programming languages.

. Versatile Libraries: Python has a wide range of powerful libraries like Pandas, NumPy, and

scikit-learn that are highly useful for data analysis, mathematical computations, machine

learning, and much more.

. Data Handling Capability: Python can easily handle large datasets, making it ideal for

finance where organizations often deal with vast amounts of data.

. Integration: Python can easily integrate with other languages and platforms, which allows

organizations to leverage existing systems and software.

. Support for Algorithms and Modelling: Python has strong support for complex financial

and statistical models, making it an excellent choice for quantitative finance, algorithmic

trading, and risk management.

. Community and Support: Python has a very active community, which means that help is

readily available and new libraries, tools, and methods are continuously being developed.

. Flexibility: Python is highly flexible and versatile, which means it can be used for a wide

range of tasks in finance, from data analysis and visualization to machine learning and

artificial intelligence.

What do hedge funds primarily use Python for? Provide 7 short bullet points.

. Sure, Python is widely used in hedge funds for a variety of tasks including:

1.

Data Analysis: Python's Pandas library is used for analyzing and manipulating data. This is
essential in hedge funds where large volumes of market and financial data need to be

processed and analyzed regularly.

. Quantitative Modelling: Hedge funds use Python to build quantitative models for

predicting market movements. Libraries like NumPy and SciPy are used for statistical

analysis and modeling.

. Algorithmic Trading: Python is used to create complex trading algorithms. These

algorithms are then used to automate trading, making decisions based on predetermined

conditions.

. Risk Management: Python is used to calculate and manage risk. This includes analyzing

potential losses and creating strategies to mitigate those risks.

. Data Visualization: With libraries like Matplotlib and Seaborn, Python is used to visualize

data, which can help in better understanding market trends and making informed

investment decisions.

. Machine Learning: Hedge funds use Python for developing machine learning models to

make predictions and find patterns in data. Python's scikit-learn library is commonly used

for this purpose.

. Web Scraping: Hedge funds use Python to scrape data from various online sources. This

can be helpful in gaining insights from data not available in traditional datasets. Libraries

like BeautifulSoup and Scrapy are used for this purpose.




What are the benefits of Python compared to other programming languages in algorithmic
trading? Provide 7 short bullet points.

. Python provides numerous advantages in algorithmic trading compared to other

programming languages:

. Ease of Use: Python's syntax is easy to learn and read, which allows algorithmic traders to
quickly write and modify trading algorithms.

. Versatility: Python has libraries and packages that cover almost every aspect of algorithmic
trading, including data analysis (Pandas), mathematical operations (NumPy), machine
learning (scikit-learn), and backtesting trading strategies (Zipline).

. Speed of Development: Python's simplicity allows rapid development and testing of
complex algorithmic trading strategies, which is a key factor in a field where speed is
crucial.

. Integration Capabilities: Python easily integrates with other systems, APIs, and databases.
This enables traders to collect, store, and use data from various sources without much
hassle.

. Open-Source Nature: Python is open-source, which means there's a strong community
support, continuous updates, and vast resources for learning and problem-solving.

. Support for Advanced Strategies: Python's advanced libraries enable the use of high-level
mathematical and statistical operations, machine learning models, and artificial intelligence
in developing sophisticated trading strategies.

. Real-Time Data Handling: Python's data handling capabilities make it possible to efficiently
deal with real-time data, which is critical for algorithmic trading where decisions need to be

made quickly based on current market conditions.

What makes Python beneficial for computationally demanding applications in financial
engineering and computational finance? Provide 7 short bullet points.

Python is highly beneficial for computationally demanding applications in financial

engineering and computational finance for the following reasons:

. Efficient Libraries: Python offers numerous libraries, such as NumPy and Pandas, that have

been optimized for high-performance mathematical and statistical computations, which are

essential in financial engineering.

. Parallel Processing: Python supports parallel processing, allowing computationally

demanding tasks to be distributed and run simultaneously on multiple cores or machines.

. Scalability: Python's capability to handle large datasets makes it ideal for computational

finance, where extensive amounts of data are the norm.

. Machine Learning and Al: Libraries like TensorFlow, PyTorch, and scikit-learn enable the

implementation of machine learning models for complex financial predictions, risk analysis,

and decision-making.

. Flexible and Dynamic: Python is an interpreted language, meaning it allows for flexibility

and dynamic changes, which are often necessary when adapting to changing financial

scenarios.

. Interoperability: Python can interact with other programming languages such as C++ or

Java, which is beneficial when integrating with existing systems that use these languages

for high-performance computing.

. Community Support: Python's large and active community continuously improves its

capabilities, ensuring the language stays up-to-date with the latest techniques in

computational finance.
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TL;DR: Yves — The Python Quant

Dr. Yves J. Hilpisch is founder and CEO of The Python Quants (http://tpg.io), the company behind
the Certificate in Python for Finance (CPF) Program (https://cpf.tpqg.io). He is also the founder
and CEO of The AI Machine (http://aimachine.io), a company focused on AI-powered algorithmic
trading.

Yves has a Diploma in Business Administration, a Ph.D. in Mathematical Finance, and 1s Adjunct
Professor for Computational Finance.

Yves is the author of six books (https://books.tpq.io):

x Financial Theory with Python (2021, 0’Reilly)

* Artificial Intelligence in Finance (2020, 0’Reilly)

+* Python for Algorithmic Trading (2020, 0’'Reilly)

* Python for Finance (2018, 2nd ed., 0’'Reilly)

* Listed Volatility and Variance Derivatives (2017, Wiley Finance)
x Derivatives Analytics with Python (2015, Wiley Finance)

Yves 1s the director of the CPF Program. He also lectures on computational finance, machine
learning, and algorithmic trading at the CQF Program (http://cqf.com).

Yves is the originator of the financial analytics library DX Analytics (http://dx—analytics.com)
and organizes Meetup group events, conferences, and bootcamps about Python, artificial
intelligence and algorithmic trading in London (http://pqf.tpqg.io) and New York (http://
aifat.tpg.io). He has given keynote speeches at technology conferences in the United States,
Europe, and Asia.
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DAY 1 DAY 2

 AI Wars | State of the Art * Generating Financial Data
 Quantitative Finance with ChatGPT * Noisy Data (Historical Data +
- Discovering Research Noise)
- Generating Quizzes - Simulated Data (Vasicek Model)
- Coding Quant Finance Models - Generated Data (GANSs)
- Fi1nancial Data Science  Advanced Financial Example
 Group Discussion - Reinforcement Learning for
« Benefits of LLMs Delta Hedging
 Problems from LLMs « Basics of Natural Language
« Overview of ML/DL/RL/NLP/LLM Processing
« Simple Financial Examples * Processing Text with Python
- Stocks Clustering - Using nltk, tokenization,
« Stock Return Prediction summarization
« ML Exercise (scikit-learn) « NLP Exercise (nltk)
« Advanced Financial Examples « Basics of Large Language Models
» Options Pricing - transformers, self-attention
* Credit Score Prediction - positional encoding, tokens,
 F1nancial Data APIs embeddings
- Historical Price Data « GPT API usage with own texts
» Historical Fundamental Data  Review and Discussion

« Other Financial Data



DISCLAIMER
This workshop 1s not only in part about ChatGPT and other LLMs.

Parts of the content itself have been created with the help of
tools like ChatGPT or Perplexity.ai. Content from such tools and
models might have been used verbatim or in adjusted form (without
any detailed attribution).

[Personal Note: GPT seems to have been trained on basically all my
publicly available content without any attribution provided for
answers based on that content.]

All financial examples represent technical illustrations only and
do not represent financial or investment advice.

The code comes without representations or warranties, to the extent
permitted by applicable law.
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State of the Art



“Generative AI’s 1mpact on productivity could add

trillions of dollars 1n value to the global economy.

Our latest research estimates that generative AI
could add the equivalent of $2.6 trillion to $4.4
trillion annually across the 63 use cases we
analyzed — by comparison, the United Kingdom’s
entire GDP 1in 2021 was $3.1 trillion.” McKinsey
(2023): The economic potential of generative AI.
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Business Schools Grapple With How
To Teach Artificial Intelligence

MBA programs want to better prepare students for a world undergoing rapid
transformation fueled by generative Al.

Photographer: Inga Kjer/Photothek

By Jo Constantz
October 19, 2023 at 4:30 PM GMT+2

Dan Wang, a professor at Columbia
Business School, says today’s AI courses
must address the technology’s limits and
opportunities. “The goal actually 1s not
to advocate for or promote the use of AI
tools, but rather for students to see,
experience and understand the benefits,
but importantly [also] the constraints,”

Wang says. ..

AI also will factor into how businesses
are structured and how they operate.
Organizationally, it will grow to become
a part of everyday communication, from
email, memos, reports and marketing copy
to product development through design,
software engineering and other
processes. Understanding this, too, will
be as essential for future executives as
mastering public speaking and

learning how to lead a team.


https://www.bloomberg.com/news/articles/2023-10-19/business-schools-are-grappling-with-how-to-teach-artificial-intelligence

Quantitative Finance with
ChatGPT

- Discovering Research

- Generating Quizzes

- Coding Quant Finance Models
- Financial Data Science



Group Discussion
- Benefits of LLMs
- Problems of LLMs



Statistical & Machine
Learning
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Types of Learning



Unsupervised learning (UL)

These are algorithms that learn from a given sample
data set of features (input) values only. They are
supposed to learn about the 1input data set, given,
for example, some guiding parameters. Clustering
algorithms fall into that category. In a financial
context, such algorithms might cluster stocks 1into
certain groups.






Supervised learning (SL)

These are algorithms that learn from a given sample
data set of features (input) and labels (output)
values. Examples are OLS regression and neural
networks. The purpose of supervised learning 1s to
learn the relationship between the input and output
values. In finance, such algorithms might be trained

to predict whether a potential debtor 1s credit-
worthy or not.



: import numpy as np

: features = np.array(((0, O,

¢ features

: labels = features[:, 0] | features [:, 1]

: labels

array([0, 1, 1, 1])
: from sklearn.naive bayes import GaussianNB
: model = GaussianNB()

: model.fit(features, labels)
GaussianNB()

: model.predict (features)
array ([0, 1, 1, 1])




Reinforcement learning (RL)

These are algorithms that learn from trial and error
by receiving a reward for taking an action. They
update an optimal action policy according to what
rewards and punishments they receive. Such
algorithms are, for example, used for environments
where actions need to be taken continuously and
rewards are received immediately, such as 1n a
computer game.



X


https://certificate.tpq.io/lunar_lander.mp4

Unsupervised
Learning.

Supervised
Learning.

Reinforcement
Learning.

Input

(Features)

Input
(Features)

Output
(Labels)

Input Input Input

(Action) (Action)  (Action)

Output Output Output

(Reward) (Reward) (Reward)

Rules | Code
Rules | Code
Rules |

Code



Simple Financial Examples
- Stock Clustering
- Stock Price Prediction



ML Exercise (scikit-learn)
- Efficient Markets
- Stock Price Prediction ..

- .. Tor a Random Walk
- .. Tor a Financial Time Series



Advanced Financial Examples
- Option Pricing with DNNs
- Credit Scoring with DNNs



Financial Data APIs
—“What has been.”



li» Historical Prices and Fundam: X +

C @& eodhd.com

AAPL 172.88 ISLA AMZN BTC-USD 29879.1133 ETH-USD 1631.2738

Financial Data APIs

70+ stock exchanges all over the world
30+ years of data | 150,000+ tickers | 20000+ ETFs | 600+ indices | 1100+ forex pairs

Feel free to compare our data sources with any other data provider
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Generating Data
-“What could have been.”
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Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio*
Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G. The train-
ing procedure for GG is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions G and D, a unique solution exists, with G recovering the training data
distribution and D equal to % everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.

1 Introduction

The promise of deep learning is to discover rich, hierarchical models [2] that represent probability
distributions over the kinds of data encountered in artificial intelligence applications, such as natural
images, audio waveforms containing speech, and symbols in natural language corpora. So far, the
most striking successes in deep learning have involved discriminative models, usually those that
map a high-dimensional, rich sensory input to a class label [14, 22]. These striking successes have
primarily been based on the backpropagation and dropout algorithms, using piecewise linear units
[19, 9, 10] which have a particularly well-behaved gradient . Deep generative models have had less
of an impact, due to the difficulty of approximating many intractable probabilistic computations that
arise in maximum likelihood estimation and related strategies, and due to difficulty of leveraging
the benefits of piecewise linear units in the generative context. We propose a new generative model
estimation procedure that sidesteps these difficulties. !

In the proposed adversarial nets framework, the generative model is pitted against an adversary: a
discriminative model that learns to determine whether a sample is from the model distribution or the
data distribution. The generative model can be thought of as analogous to a team of counterfeiters,
trying to produce fake currency and use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit currency. Competition in this game drives
both teams to improve their methods until the counterfeits are indistiguishable from the genuine
articles.

*Jean Pouget-Abadie is visiting Université de Montréal from Ecole Polytechnique.

"Sherjil Ozair is visiting Université de Montréal from Indian Institute of Technology Delhi

*Yoshua Bengio is a CIFAR Senior Fellow.

'All code and hyperparameters available at http: //www.github.com/goodfeli/adversarial

Time-series Generative Adversarial Networks

Jinsung Yoon™ Daniel Jarrett*
University of California, Los Angeles, USA University of Cambridge, UK
jsyoon0823@g.ucla.edu daniel. jarrett@maths.cam.ac.uk

Mihaela van der Schaar
University of Cambridge, UK
University of California, Los Angeles, USA
Alan Turing Institute, UK
mv472@cam.ac.uk, mihaela@ee.ucla.edu

Abstract

A good generative model for time-series data should preserve temporal dynamics,
in the sense that new sequences respect the original relationships between variables
across time. Existing methods that bring generative adversarial networks (GANSs)
into the sequential setting do not adequately attend to the temporal correlations
unique to time-series data. At the same time, supervised models for sequence
prediction—which allow finer control over network dynamics—are inherently
deterministic. We propose a novel framework for generating realistic time-series
data that combines the flexibility of the unsupervised paradigm with the control
afforded by supervised training. Through a learned embedding space jointly
optimized with both supervised and adversarial objectives, we encourage the
network to adhere to the dynamics of the training data during sampling. Empirically,
we evaluate the ability of our method to generate realistic samples using a variety of
real and synthetic time-series datasets. Qualitatively and quantitatively, we find that
the proposed framework consistently and significantly outperforms state-of-the-art
benchmarks with respect to measures of similarity and predictive ability.

1 Introduction

What is a good generative model for time-series data? The temporal setting poses a unique challenge
to generative modeling. A model is not only tasked with capturing the distributions of features
within each time point, it should also capture the potentially complex dynamics of those variables
across time. Specifically, in modeling multivariate sequential data x1.7 = (X1, ..., X7 ), we wish to
accurately capture the conditional distribution p(x¢|x1::—1) of temporal transitions as well.

On the one hand, a great deal of work has focused on improving the temporal dynamics of au-
toregressive models for sequence prediction. These primarily tackle the problem of compounding
errors during multi-step sampling, introducing various training-time modifications to more accurately
reflect testing-time conditions [1, 2, 3]. Autoregressive models explicitly factor the distribution of
sequences into a product of conditionals [ [, p(x¢|x1.¢—1). However, while useful in the context of
forecasting, this approach is fundamentally deterministic, and is not truly generative in the sense that
new sequences can be randomly sampled from them without external conditioning. On the other
hand, a separate line of work has focused on directly applying the generative adversarial network
(GAN) framework to sequential data, primarily by instantiating recurrent networks for the roles
of generator and discriminator [4, 5, 6]. While straightforward, the adversarial objective seeks to
model p(x;.7) directly, without leveraging the autoregressive prior. Importantly, simply summing

* indicates equal contribution

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.




RL for Delta Hedging



“Goldman Sachs Group Inc. 1s expanding 1ts use of
a technology that leverages artificial
intelligence in the hopes that it will make it
easier for clients to plan complex derivatives
trades.

After already using the software to shake up the
worlds of equities and foreign exchange options,
the firm i1n recent weeks began allowing clients to
use 1ts visual structuring product for credit
derivatives. It’'s aiming to offer the service for
rates trading in the first half of next year,
Chris Churchman, who runs Goldman’s digital
trading platform Marquee, said 1n an interview.

The product, which Goldman began offering last
year, helps institutional clients with price
discovery and trading ideas. It also assesses the
risks of a given trade and can gauge the chances
that the trade will pay off.”

Source: “Money Stuff” Newsletter by Matt Levine
from 25. October 2023



https://www.bloomberg.com/account/newsletters/money-stuff

In the Black-Scholes-Merton (1973) model, delta hedging is a strategy used to eliminate the
risk associated with holding an option by continuously adjusting the position in the underlying

CALL | K=0.9 | r=0.05 | sigma=0.1

asset. The main principle behind the model is to hedge the option by buying and selling the

—— phi

underlying asset in a specific way to eliminate risk. This type of hedging is called "continuously | \S’t(right)
revised delta hedging" and is the basis of more complicated hedging strategies such as those

engaged in by investment banks and hedge funds

Delta is a Greek letter used to represent the sensitivity of an option's price to changes in the
price of the underlying asset. In the Black-Scholes-Merton model, the delta of a European-
style call option can be calculated using the following formula:

oC

Azﬁ

Where:

A is the delta of the call option
C is the price of the call option
S is the price of the underlying asset

p&I[%]
The delta of a European-style put option can be calculated using the following formula:

AL
0S
Where:

A is the delta of the put option

P is the price of the put option

S is the price of the underlying asset

Delta hedging involves adjusting the position in the underlying asset to maintain a delta-
neutral position. A delta-neutral position is one where the change in the value of the option is
offset by the change in the value of the underlying asset. This can be achieved by buying or

selling the underlying asset as the price changes, based on the delta of the option.



Natural Language Processing



Here's a concise bullet-point summary of major techniques used 1n
Natural Language Processing (NLP) with Python:

 Tokenization:
- Splitting text into words, sentences, or other units.
« Common Llibraries: NLTK, spaCy.
 Part-of-Speech Tagging:
+ Assigning grammatical categories (e.g., noun, verb) to tokens.
« Common Llibraries: NLTK, spaCy.
 Named Entity Recognition (NER):
+ Identifying and classifying named entities (e.g., person names,
organizations) in text.
« Common libraries: spaCy, StanfordNLP.
« Stemming and Lemmatization:
* Reducing words to their base or root form.
- Stemming: Truncating words (e.g., "running" to "run").
+ Lemmatization: Transforming words to their dictionary form (e.g.,
Ilwentll .to "gO") .
« Common Llibraries: NLTK, spaCy.



Stopword Removal.:

- Removing common words (e.g., "and", "the") that may not add
significant meaning 1in analysis.

« Common libraries: NLTK, spaCy.

Word Embeddings:

- Representing words as dense vectors capturing semantic meaning.

« Techniques: Word2Vec, GloVe, FastText.

« Common libraries: Gensim, spaCy.

Topic Modeling:

* Discovering topics 1n large volumes of text.

+ Techniques: Latent Dirichlet Allocation (LDA), Non—-Negative Matrix
Factorization (NMF).

 Common libraries: Gensim, scikit-Llearn.

Sentiment Analysis:

» Determining the sentiment or emotion expressed in text.

« Common libraries: TextBlob, VADER, spaCy.

Syntax Parsing:

- Analyzing the grammatical structure of sentences.

« Common libraries: spaCy, StanfordNLP.



Machine Translation:

- Translating text from one language to another.

- Common libraries: OpenNMT, T2T (Tensor2Tensor).

Seq2Seq Models:

- Using recurrent neural networks (RNNs) for tasks like machine
translation and text summarization.

« Common libraries: TensorFlow, PyTorch.

Attention Mechanisms and Transformers:

- Advanced model architectures for handling long—-range dependencies 1n
text.

- Techniques: BERT, GPT, T5.

« Common libraries: HuggingFace's Transformers.

Text Classification:

- Categorizing text into predefined categories or labels.

» Common libraries: scikit-learn, TensorFlow, PyTorch.

Regular Expressions:

- Pattern matching and text extraction.

« Common library: re module 1in Python.

Dependency Parsing:

- Analyzing the grammatical relationships between words 1in a sentence.

« Common libraries: spaCy, StanfordNLP.



Large Language Models



Attention Is All You Need
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.

1 Introduction

Recurrent neural networks, long short-term memory [12] and gated recurrent [7] neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and
transduction problems such as language modeling and machine translation [29, 2, 5]. Numerous
efforts have since continued to push the boundaries of recurrent language models and encoder-decoder
architectures [31, 21, 13].

*Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

"Work performed while at Google Brain.

*Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Minds and Machines (2020) 30:681-694
https://doi.org/10.1007/5s11023-020-09548-1
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Abstract

In this commentary, we discuss the nature of reversible and irreversible questions,
that is, questions that may enable one to identify the nature of the source of their
answers. We then introduce GPT-3, a third-generation, autoregressive language
model that uses deep learning to produce human-like texts, and use the previous
distinction to analyse it. We expand the analysis to present three tests based on
mathematical, semantic (that is, the Turing Test), and ethical questions and show
that GPT-3 is not designed to pass any of them. This is a reminder that GPT-3 does
not do what it is not supposed to do, and that any interpretation of GPT-3 as the
beginning of the emergence of a general form of artificial intelligence is merely
uninformed science fiction. We conclude by outlining some of the significant con-
sequences of the industrialisation of automatic and cheap production of good,
semantic artefacts.

Keywords Automation - Artificial Intelligence - GPT-3 - Irreversibility - Semantics -
Turing Test

1 Introduction

Who mowed the lawn, Ambrogio (a robotic lawn mower)! or Alice? We know
that the two are different in everything: bodily, “cognitively” (in terms of inter-
nal information processes), and “behaviourally” (in terms of external actions).
And yet it is impossible to infer, with full certainty, from the mowed lawn who
mowed it. Irreversibility and reversibility are not a new idea (Perumalla 2014).
They find applications in many fields, especially computing and physics. In

! This is a real example, see https://www.ambrogiorobot.com/en. Disclosure: LF owns one.

D4 Luciano Floridi
luciano.floridi@oii.ox.ac.uk

Oxford Internet Institute, 1 St Giles’, Oxford OX1 3JS, UK
The Alan Turing Institute, British Library, 96 Euston Rd, London NW1 2DB, UK
IBM Italia, University Programs Leader - CTO Blockchain & Digital Currencies, Rome, Italy
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https://certificate.tpq.io/attention_is_all_you_need.pdf
https://certificate.tpq.io/gpt3_nature_scopre_limits.pdf

Large Language Models (LLMs) like OpenAIl's GPT (Generative Pre-trained
Transformer) series, BERT (Bidirectional Encoder Representations from
Transformers), and others have revolutionized the field of NLP. Here's
a concise bullet-point summary of the major techniques and components

of LLMs:

 Transformers Architecture:
» Introduced 1n the "Attention Is ALl You Need" paper.
+ Consists of encoder and decoder stacks (though LLMs like GPT only

use the decoder stack).

 Attention Mechanisms:
» Scaled Dot-Product Attention: Computes attention scores based on the

dot product of query and key vectors.
 Multi-Head Attention: Parallel attention layers that capture

different types of information.

 Positional Encoding:
« Since transformers don't have a built-in notion of sequence order,

positional encodings are added to embeddings to provide positional
information.



Embedding Layers:

« Convert 1nput tokens into continuous vectors.

« Often 1nitialized with pre-trained embeddings like Word2Vec or
GloVe, though they can be trained from scratch.

Layer Normalization:

- Normalizes the activations of each feature within a layer.

» Helps stabilize and accelerate training.

Feed-Forward Neural Networks:

- Present 1n each transformer block.

» Consists of two linear transformations with a RelLU activation 1in
between.

Residual Connections:

« Helps 1n preventing the vanishing gradient problem.

- Allows deeper models by adding the original input to the output of
each sub-Llayer.

Masking:

- Padding Mask: Ensures the model doesn't attend to padding tokens.

- Look—ahead Mask: Used 1in decoders to ensure that a position doesn't
attend to future positions.



Pre-training and Fine-tuning:

- LLMs are often pre-trained on large corpora to learn language
representations and then fine-tuned on specific tasks.

Bidirectional Context:

- Models like BERT are trained to consider both left and right
context, making them deeply bidirectional.

Adaptive Learning Rates:

» Techniques like Adam optimizer are commonly used with learning rate
warm—-up and decay.

Regularization Techniques:

* Dropout: Used 1in various parts of the model, including attention
welghts.

- Layer-wise Recurrent Mechanism: Some models use mechanisms where
layers can pass information to the same layer in the next time step.



Parameter Sharing:

» In models like GPT, weights are shared between the token embedding
layer and the final softmax layer.

Large-scale Training:

« LLMs have hundreds of millions to billions of parameters.

- Training requires distributed computing and advanced techniques to
handle such large models.

Prompt Engineering and Few-shot Learning:

- Techniques to guide LLMs 1n generating specific outputs or
performing tasks with limited examples.

Knowledge Integration:

- Some LLMs are trained with external knowledge bases or facts to
enhance their knowledge.

This list provides an overview of the major techniques and components
of LLMs. The field 1i1s rapidly evolving, with new techniques and
architectures emerging regularly.



APPENDIX:
Dense Neural Networks
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“A major source of difficulty in many
real-world artificial intelligence
applications 1s that many of the factors
of variation influence every single pilece
of data we are able to observe.”

“Deep learning solves this central
problem in representation learning by
introducing representations that are
expressed in terms of other, simpler
representations. Deep learning enables
the computer to build complex concepts
out of simpler concepts.”

“The quintessential example of a deep
learning model is the feedforward deep
network, or multilayer perceptron (MLP).
A multilayer perceptron 1s just a
mathematical function mapping some set of
input values to output values. The
function 1s formed by composing many
simpler functions. We can think of each
application of a different mathematical
function as providing a new
representation of the input.”



Neural Network (Simple)
0 Hidden Layers

9
weights

Input Layer Output Layer



Neural Network (Shallow)
1 Hidden Layer

Input Layer Hidden Layer Output Layer



Neural Network (Deep)
2+ Hidden Layers

Input Layer Hidden Layers QOutput Layer



Recurrent Neural Networks



Recurrent Neural Network (Deep)
Remembering the Output/State

X1
= = 5
i i i
O O O
X2 D ) D
= = =
X3

Input Layer Hidden Layers QOutput Layer

state t = 0

for input t in 1nput sequence:
output t = f(input t, state t)
state t = output t

Recurrent
connection

Source: Chollet (2017)



Long Short Term Memory (LSTM)
Adding a Carry Track

output t-1

input t-1

output t

output t =
activation(
Wosinput t +
Uoestate t + State t+1
bo)

output t+1

input t+1

output_t =
activation(
Worsinput_t +
Uo-state_t + State t+1
Vosc_t +
bo)

output t-1

output t+1

input t+1

Carry track

activation(
Worsinput t +
Uoeslate t +
Voec_t +
bo)

State t+1

Source:

output t+1

Carry track

input t+1

Chollet

(2017)



Convolutional Neural Networks
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https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Overview of Neural Networks



Input Cell
() Backfed Input Cell
A Noisy Input Cell
‘ Hidden Cell
‘ Probablistic Hidden Cell

' Spiking Hidden Cell

. Match Input Output Cell
‘ Recurrent Cell
‘ Memory Cell

‘ Gated Memory Cell

Kernel

Convolution or Pool

A mostly complete chart of

Neural Networks sercmmesos
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Reinforcement
Learning

An Introduction
second edition

“Of all the forms of machine learning,
reinforcement learning 1s the closest
to the kind of learning that humans
and other animals do, and many of the
core algorithms of reinforcement
learning were originally 1inspired by
biological learning systems.”

“The most important feature
distinguishing reinforcement learning
from other types of learning 1s that
1t uses training information that
evaluates the actions taken rather
than instructs by giving correct
actions.”

“Reinforcement learning 1s about
learning from interaction how to
behave 1n order to achieve a goal. The
reinforcement learning agent and 1its
environment interact over a sequence
of discrete time steps.”


https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262039249/

The Science of
Consequences

1IN

HOW THEY
AFFECT GENES, CHANGE THE BRAIN,
AND IMPACT OUR WORLD

SUSAN M. SCHNEIDER

JUDEA PEARL

WINNER OF THE TURING AWARD

AND DANA MACKENZIE
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BOOK OF

WHY

A

THE NEW SCIENCE
OF CAUSE AND EFFECT




Environment

The environment defines the problem at hand. This
can be a computer game to be played or a financial
market to be traded 1in.

State

A state subsumes all relevant parameters that
describe the current status of the environment. In a
computer game this might be the whole screen with
all 1ts pixels. In a financial market, this might
include current and historical price levels,
financial i1ndicators such as moving averages,
macroeconomic variliables, and so on.



Agent

The term agent subsumes all elements of the RL
algorithm that interacts with the environment and
that learns from these interactions. In a gaming
context, the agent might represent a player playing
the game. In a financial context, the agent could
represent a trader placing bets on rising or falling
markets.

Action

An agent can choose one action from a (limited) set
of allowed actions. In a computer game, movements to
the left or right might be allowed actions, while 1n
a fTinancial market going long or short could be
admissible.



Step

Given an action of an agent, the state of the
environment 1s updated. One such update 1s generally
called a step. The concept of a step 1s general
enough to encompass both heterogeneous and
homogeneous time 1intervals between two steps. While
1in computer games, real-time interaction with the
game environment 1s simulated by rather short,
homogeneous time intervals (“game clock”), a trading
bot i1nteracting with a financial market environment
could take actions at longer, heterogeneous time
intervals, for 1nstance.



Reward

Depending on the action an agent chooses,

a reward (or penalty) is awarded. For a computer
game, points are a typical reward. In a financial
context, profit (or loss) is a standard reward.

Target

The target specifies what the agent tries to
maximize. In a computer game, this 1n general 1s the
score reached by the agent. For a financial trading
bot, this might be the trading profit.



Policy

The policy defines which action an agent takes given
a certain state of the environment. Given a certailn
state of a computer game, represented by all the
pixels that make up the current scene, the policy
might specify that the agent chooses “move right” as
the action. A trading bot that observes three price
increases 1n a row might decide, according to 1ts
policy, to short the market.

Episode

An eplsode is a set of steps from the initial state
of the environment until success 1s achieved or
failure 1s observed. In a game, from the start of
the game until a win or loss. In the financial
world, for example, from the beginning of the year
to the end of the year or to bankruptcy.



Reinforcement Learning
—Q-Learning



Reward Function

The reward function R assigns to each state—-action
(S, A) pair a numerical reward.

R:SXA—->R

Action Policy

An action policy Q assigns to each state S and
allowed action A a numerical value. The numerical
value is composed of the immediate reward of taking

action A and the discounted delayed reward — given
an optimal action taken 1n the subsequent state.

O:5%XA - R,
0 (S,A,) =R (S.A,) +7- max 0 (S;41-a)



Representation

In general, the optimal action policy Q can not be
specified in closed form (e.g. in the form of a
table). Therefore, Q-learning relies in general on
approximate representations for the optimal policy

Q.

Neural Network

Due to the approximation capabilities of neural
networks (“Universal Approximation Theorems”),
neural networks are typically used to represent
optimal action policies Q. Features are the
parameters that describe the state of the
environment. Labels are values attached to each
allowed action.



An Overview Of Artificial Neural Networks for

Mathematicians “In the mathematical theory
Leonardo Ferreira Guilhoto of artificial neural networks,
s the universal approximation
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Exploration

This refers to actions taken by an agent that are

random 1n nature. The purpose 1s to explore random
actions and their associated values beyond what the
current optimal policy would dictate.

Exploitation

This refers to actions taken 1n accordance with the
current optimal policy.

Replay

This refers to the (reqular) updating of the optimal

action policy given past and memorized experiences
(by re-training the neural network).



gamma
The parameter gamma represents the discount factor
by which delayed rewards are taken 1nto account.

epsilon
The parameter epsilon defines the ratio with which

the algorithm relies on exploration as compared to
exploitation.

epsilon decay
The parameter epsilon decay specifles the rate at
which epsilon 1S reduced.
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