
Artificial Intelligence in Finance
Workshop at Texas State University

McCoy College of Business, October 2023

Dr. Yves J. Hilpisch

Introduction

https://cpf.tpq.io

CPF Program

http://cpf.tpq.io

https://cpf.tpq.io

4-12 months
program

(live or self-paced)

6 Books
→ 2,500 pages

PDF

330 hours
of instruction

→ 2,000,000 words

350 PY Files
→ 35,000+ LOC

500 Jupyter
Notebooks
→ 50,000 LOC

https://cpf.tpq.io

Crypto Basics
(11 hours)

Linux Basics
(12 hours)

Python for Finance
Basics

(35 hours)

Mathematics Basics
(45 hours)

Program Overview
A comprehensive set of classes and modules to master Python for Finance.

Python for Databases
(9 hours)

Python & Excel
(6 hours)

Financial Data Science
(16 hours)

Finance with Python
(9 hours)

Natural Language
Processing
(3 hours)

AI in Finance
(18 hours)

AI in Finance Book
(18 hours)

Financial Packages
(6 hours)

Python for Asset
Management

(25 hours)

RL for Finance
(15 hours)

Python for Algo
Trading Addon

(22 hours)

Python for Algo
Trading Practice

(8 hours)

Python for Algo
Trading Core

(15 hours)

Listed Vol & Var
Derivatives

(9 hours)

Python for Comp
Finance DX
(12 hours)

Python for Comp
Finance Core

(17 hours)

AT Bootcamp
(12 hours)

PFF Bootcamp
(9 hours)

Foundations Applications
330+ hours

Python in Finance

Python in Hedge Funds

Python for Algorithmic Trading

Python for Computational Finance

Financial Theory with Python — A Gentle Introduction

http://books.tpq.io

http://books.tpq.io

Python for Finance

http://books.tpq.io

http://books.tpq.io

http://books.tpq.io

Quant Finance with Python

http://books.tpq.io

Python & AI for Finance & Trading

http://books.tpq.io

http://books.tpq.io

http://hilpisch.com

TL;DR: Yves — The Python Quant

Dr. Yves J. Hilpisch is founder and CEO of The Python Quants (http://tpq.io), the company behind
the Certificate in Python for Finance (CPF) Program (https://cpf.tpq.io). He is also the founder
and CEO of The AI Machine (http://aimachine.io), a company focused on AI-powered algorithmic
trading.

Yves has a Diploma in Business Administration, a Ph.D. in Mathematical Finance, and is Adjunct
Professor for Computational Finance.

Yves is the author of six books (https://books.tpq.io):

* Financial Theory with Python (2021, O’Reilly)
* Artificial Intelligence in Finance (2020, O’Reilly)
* Python for Algorithmic Trading (2020, O’Reilly)
* Python for Finance (2018, 2nd ed., O’Reilly)
* Listed Volatility and Variance Derivatives (2017, Wiley Finance)
* Derivatives Analytics with Python (2015, Wiley Finance)

Yves is the director of the CPF Program. He also lectures on computational finance, machine
learning, and algorithmic trading at the CQF Program (http://cqf.com).

Yves is the originator of the financial analytics library DX Analytics (http://dx-analytics.com)
and organizes Meetup group events, conferences, and bootcamps about Python, artificial
intelligence and algorithmic trading in London (http://pqf.tpq.io) and New York (http://
aifat.tpq.io). He has given keynote speeches at technology conferences in the United States,
Europe, and Asia.

http://hilpisch.com
http://tpq.io
https://cpf.tpq.io
http://aimachine.io
https://books.tpq.io
http://cqf.com
http://dx-analytics.com
http://pqf.tpq.io
http://aifat.tpq.io
http://aifat.tpq.io

Agenda

DAY 1
• AI Wars | State of the Art
• Quantitative Finance with ChatGPT

• Discovering Research
• Generating Quizzes
• Coding Quant Finance Models
• Financial Data Science

• Group Discussion
• Benefits of LLMs
• Problems from LLMs

• Overview of ML/DL/RL/NLP/LLM
• Simple Financial Examples

• Stocks Clustering
• Stock Return Prediction

• ML Exercise (scikit-learn)
• Advanced Financial Examples

• Options Pricing
• Credit Score Prediction

• Financial Data APIs
• Historical Price Data
• Historical Fundamental Data
• Other Financial Data

DAY 2
• Generating Financial Data

• Noisy Data (Historical Data +
Noise)

• Simulated Data (Vasicek Model)
• Generated Data (GANs)

• Advanced Financial Example
• Reinforcement Learning for
Delta Hedging

• Basics of Natural Language
Processing
• Processing Text with Python
• Using nltk, tokenization,
summarization

• NLP Exercise (nltk)
• Basics of Large Language Models

• transformers, self-attention
• positional encoding, tokens,
embeddings

• GPT API usage with own texts
• Review and Discussion

DISCLAIMER

This workshop is not only in part about ChatGPT and other LLMs.

Parts of the content itself have been created with the help of
tools like ChatGPT or Perplexity.ai. Content from such tools and
models might have been used verbatim or in adjusted form (without
any detailed attribution).

[Personal Note: GPT seems to have been trained on basically all my
publicly available content without any attribution provided for
answers based on that content.]

All financial examples represent technical illustrations only and
do not represent financial or investment advice.

The code comes without representations or warranties, to the extent
permitted by applicable law.

AI Wars
State of the Art

“Generative AI’s impact on productivity could add
trillions of dollars in value to the global economy.
Our latest research estimates that generative AI
could add the equivalent of $2.6 trillion to $4.4
trillion annually across the 63 use cases we
analyzed — by comparison, the United Kingdom’s
entire GDP in 2021 was $3.1 trillion.” McKinsey
(2023): The economic potential of generative AI.

Dan Wang, a professor at Columbia
Business School, says today’s AI courses
must address the technology’s limits and
opportunities. “The goal actually is not
to advocate for or promote the use of AI
tools, but rather for students to see,
experience and understand the benefits,
but importantly [also] the constraints,”
Wang says. …

AI also will factor into how businesses
are structured and how they operate.
Organizationally, it will grow to become
a part of everyday communication, from
email, memos, reports and marketing copy
to product development through design,
software engineering and other
processes. Understanding this, too, will
be as essential for future executives as
mastering public speaking and
learning how to lead a team.

https://www.bloomberg.com/news/articles/2023-10-19/business-schools-are-grappling-with-how-to-teach-artificial-intelligence

Quantitative Finance with
ChatGPT
- Discovering Research
- Generating Quizzes
- Coding Quant Finance Models
- Financial Data Science

Group Discussion
- Benefits of LLMs
- Problems of LLMs

Statistical & Machine
Learning

Mathematics.
Function generates
data.

f(x) = 2 +
1
2

x

α, β = ?, ?

Statistics.
Data generates
function. ̂f(x) = α + βx ≈ y

yi = f(xi), i = 1,2,…, n

(yi, xi)n
i=1

Mathematics.

Statistics.

Function

Input

Output

Input

Output

Function

Programming.

Machine Learning.

Rules | Code

Data

Output

Input

Output

Rules | Code

Types of Learning

Unsupervised learning (UL)
These are algorithms that learn from a given sample
data set of features (input) values only. They are
supposed to learn about the input data set, given,
for example, some guiding parameters. Clustering
algorithms fall into that category. In a financial
context, such algorithms might cluster stocks into
certain groups.

Supervised learning (SL)
These are algorithms that learn from a given sample
data set of features (input) and labels (output)
values. Examples are OLS regression and neural
networks. The purpose of supervised learning is to
learn the relationship between the input and output
values. In finance, such algorithms might be trained
to predict whether a potential debtor is credit-
worthy or not.

Reinforcement learning (RL)
These are algorithms that learn from trial and error
by receiving a reward for taking an action. They
update an optimal action policy according to what
rewards and punishments they receive. Such
algorithms are, for example, used for environments
where actions need to be taken continuously and
rewards are received immediately, such as in a
computer game.

Input
(Action)

Output
(Reward)

Input
(Action)

Output
(Reward)

Policy
Update

https://certificate.tpq.io/lunar_lander.mp4

Supervised
Learning. Input

(Features)

Output
(Labels)

Rules | Code

Unsupervised
Learning.

Input
(Features) Rules | Code

Reinforcement
Learning.

Input
(Action)

Rules |
Code

Input
(Action)

Input
(Action)

Output
(Reward)

Output
(Reward)

Output
(Reward)

Simple Financial Examples
- Stock Clustering
- Stock Price Prediction

ML Exercise (scikit-learn)
- Efficient Markets
- Stock Price Prediction …
- … for a Random Walk
- … for a Financial Time Series

Advanced Financial Examples
- Option Pricing with DNNs
- Credit Scoring with DNNs

Financial Data APIs
—“What has been.”

https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB
https://eodhistoricaldata.com/r/?ref=X8R79ISB

Generating Data
—“What could have been.”

RL for Delta Hedging

“Goldman Sachs Group Inc. is expanding its use of
a technology that leverages artificial
intelligence in the hopes that it will make it
easier for clients to plan complex derivatives
trades.

After already using the software to shake up the
worlds of equities and foreign exchange options,
the firm in recent weeks began allowing clients to
use its visual structuring product for credit
derivatives. It’s aiming to offer the service for
rates trading in the first half of next year,
Chris Churchman, who runs Goldman’s digital
trading platform Marquee, said in an interview.

The product, which Goldman began offering last
year, helps institutional clients with price
discovery and trading ideas. It also assesses the
risks of a given trade and can gauge the chances
that the trade will pay off.”

Source: “Money Stuff” Newsletter by Matt Levine
from 25. October 2023

https://www.bloomberg.com/account/newsletters/money-stuff

Natural Language Processing

• Tokenization:
• Splitting text into words, sentences, or other units.
• Common libraries: NLTK, spaCy.

• Part-of-Speech Tagging:
• Assigning grammatical categories (e.g., noun, verb) to tokens.
• Common libraries: NLTK, spaCy.

• Named Entity Recognition (NER):
• Identifying and classifying named entities (e.g., person names,
organizations) in text.

• Common libraries: spaCy, StanfordNLP.
• Stemming and Lemmatization:

• Reducing words to their base or root form.
• Stemming: Truncating words (e.g., "running" to "run").
• Lemmatization: Transforming words to their dictionary form (e.g.,
"went" to "go").

• Common libraries: NLTK, spaCy.

Here's a concise bullet-point summary of major techniques used in
Natural Language Processing (NLP) with Python:

• Stopword Removal:
• Removing common words (e.g., "and", "the") that may not add
significant meaning in analysis.

• Common libraries: NLTK, spaCy.
• Word Embeddings:

• Representing words as dense vectors capturing semantic meaning.
• Techniques: Word2Vec, GloVe, FastText.
• Common libraries: Gensim, spaCy.

• Topic Modeling:
• Discovering topics in large volumes of text.
• Techniques: Latent Dirichlet Allocation (LDA), Non-Negative Matrix
Factorization (NMF).

• Common libraries: Gensim, scikit-learn.
• Sentiment Analysis:

• Determining the sentiment or emotion expressed in text.
• Common libraries: TextBlob, VADER, spaCy.

• Syntax Parsing:
• Analyzing the grammatical structure of sentences.
• Common libraries: spaCy, StanfordNLP.

• Machine Translation:
• Translating text from one language to another.
• Common libraries: OpenNMT, T2T (Tensor2Tensor).

• Seq2Seq Models:
• Using recurrent neural networks (RNNs) for tasks like machine
translation and text summarization.

• Common libraries: TensorFlow, PyTorch.
• Attention Mechanisms and Transformers:

• Advanced model architectures for handling long-range dependencies in
text.

• Techniques: BERT, GPT, T5.
• Common libraries: HuggingFace's Transformers.

• Text Classification:
• Categorizing text into predefined categories or labels.
• Common libraries: scikit-learn, TensorFlow, PyTorch.

• Regular Expressions:
• Pattern matching and text extraction.
• Common library: re module in Python.

• Dependency Parsing:
• Analyzing the grammatical relationships between words in a sentence.
• Common libraries: spaCy, StanfordNLP.

Large Language Models

https://certificate.tpq.io/attention_is_all_you_need.pdf
https://certificate.tpq.io/gpt3_nature_scopre_limits.pdf

• Transformers Architecture:
• Introduced in the "Attention Is All You Need" paper.
• Consists of encoder and decoder stacks (though LLMs like GPT only
use the decoder stack).

• Attention Mechanisms:
• Scaled Dot-Product Attention: Computes attention scores based on the
dot product of query and key vectors.

• Multi-Head Attention: Parallel attention layers that capture
different types of information.

• Positional Encoding:
• Since transformers don't have a built-in notion of sequence order,
positional encodings are added to embeddings to provide positional
information.

Large Language Models (LLMs) like OpenAI's GPT (Generative Pre-trained
Transformer) series, BERT (Bidirectional Encoder Representations from
Transformers), and others have revolutionized the field of NLP. Here's
a concise bullet-point summary of the major techniques and components
of LLMs:

• Embedding Layers:
• Convert input tokens into continuous vectors.
• Often initialized with pre-trained embeddings like Word2Vec or
GloVe, though they can be trained from scratch.

• Layer Normalization:
• Normalizes the activations of each feature within a layer.
• Helps stabilize and accelerate training.

• Feed-Forward Neural Networks:
• Present in each transformer block.
• Consists of two linear transformations with a ReLU activation in
between.

• Residual Connections:
• Helps in preventing the vanishing gradient problem.
• Allows deeper models by adding the original input to the output of
each sub-layer.

• Masking:
• Padding Mask: Ensures the model doesn't attend to padding tokens.
• Look-ahead Mask: Used in decoders to ensure that a position doesn't
attend to future positions.

• Pre-training and Fine-tuning:
• LLMs are often pre-trained on large corpora to learn language
representations and then fine-tuned on specific tasks.

• Bidirectional Context:
• Models like BERT are trained to consider both left and right
context, making them deeply bidirectional.

• Adaptive Learning Rates:
• Techniques like Adam optimizer are commonly used with learning rate
warm-up and decay.

• Regularization Techniques:
• Dropout: Used in various parts of the model, including attention
weights.

• Layer-wise Recurrent Mechanism: Some models use mechanisms where
layers can pass information to the same layer in the next time step.

• Parameter Sharing:
• In models like GPT, weights are shared between the token embedding
layer and the final softmax layer.

• Large-scale Training:
• LLMs have hundreds of millions to billions of parameters.
• Training requires distributed computing and advanced techniques to
handle such large models.

• Prompt Engineering and Few-shot Learning:
• Techniques to guide LLMs in generating specific outputs or
performing tasks with limited examples.

• Knowledge Integration:
• Some LLMs are trained with external knowledge bases or facts to
enhance their knowledge.

This list provides an overview of the major techniques and components
of LLMs. The field is rapidly evolving, with new techniques and
architectures emerging regularly.

APPENDIX:
Dense Neural Networks

“A major source of difficulty in many
real-world artificial intelligence
applications is that many of the factors
of variation influence every single piece
of data we are able to observe.”

“Deep learning solves this central
problem in representation learning by
introducing representations that are
expressed in terms of other, simpler
representations. Deep learning enables
the computer to build complex concepts
out of simpler concepts.”

“The quintessential example of a deep
learning model is the feedforward deep
network, or multilayer perceptron (MLP).
A multilayer perceptron is just a
mathematical function mapping some set of
input values to output values. The
function is formed by composing many
simpler functions. We can think of each
application of a different mathematical
function as providing a new
representation of the input.”

x1

x2

x3

y1

y2

Input Layer Output Layer

w
ei
gh

ts

Neural Network (Simple)
0 Hidden Layers

x1

x2

x3

y1

y2

Input Layer Hidden Layer Output Layer

w
ei
gh

ts

w
ei
gh

ts

Neural Network (Shallow)
1 Hidden Layer

x1

x2

x3

y1

y2

Input Layer Hidden Layers Output Layer

w
ei
gh

ts

w
ei
gh

ts

w
ei
gh

ts

Neural Network (Deep)
2+ Hidden Layers

Recurrent Neural Networks

x1

x2

x3

y1

y2

Input Layer Hidden Layers Output Layer

w
ei
gh

ts

w
ei
gh

ts

w
ei
gh

ts

Recurrent Neural Network (Deep)
Remembering the Output/State

state_t = 0
for input_t in input_sequence:
 output_t = f(input_t, state_t)
 state_t = output_t

Source: Chollet (2017)

Long Short Term Memory (LSTM)
Adding a Carry Track

Source: Chollet (2017)

Convolutional Neural Networks

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Overview of Neural Networks

https://www.asimovinstitute.org/neural-network-zoo/

https://www.asimovinstitute.org/neural-network-zoo/

APPENDIX:
Reinforcement Learning

“Of all the forms of machine learning,
reinforcement learning is the closest
to the kind of learning that humans
and other animals do, and many of the
core algorithms of reinforcement
learning were originally inspired by
biological learning systems.”

“The most important feature
distinguishing reinforcement learning
from other types of learning is that
it uses training information that
evaluates the actions taken rather
than instructs by giving correct
actions.”

“Reinforcement learning is about
learning from interaction how to
behave in order to achieve a goal. The
reinforcement learning agent and its
environment interact over a sequence
of discrete time steps.”

https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262039249/

Environment
The environment defines the problem at hand. This
can be a computer game to be played or a financial
market to be traded in.

State
A state subsumes all relevant parameters that
describe the current status of the environment. In a
computer game this might be the whole screen with
all its pixels. In a financial market, this might
include current and historical price levels,
financial indicators such as moving averages,
macroeconomic variables, and so on.

Agent
The term agent subsumes all elements of the RL
algorithm that interacts with the environment and
that learns from these interactions. In a gaming
context, the agent might represent a player playing
the game. In a financial context, the agent could
represent a trader placing bets on rising or falling
markets.

Action
An agent can choose one action from a (limited) set
of allowed actions. In a computer game, movements to
the left or right might be allowed actions, while in
a financial market going long or short could be
admissible.

Step
Given an action of an agent, the state of the
environment is updated. One such update is generally
called a step. The concept of a step is general
enough to encompass both heterogeneous and
homogeneous time intervals between two steps. While
in computer games, real-time interaction with the
game environment is simulated by rather short,
homogeneous time intervals (“game clock”), a trading
bot interacting with a financial market environment
could take actions at longer, heterogeneous time
intervals, for instance.

Reward
Depending on the action an agent chooses,
a reward (or penalty) is awarded. For a computer
game, points are a typical reward. In a financial
context, profit (or loss) is a standard reward.

Target
The target specifies what the agent tries to
maximize. In a computer game, this in general is the
score reached by the agent. For a financial trading
bot, this might be the trading profit.

Policy
The policy defines which action an agent takes given
a certain state of the environment. Given a certain
state of a computer game, represented by all the
pixels that make up the current scene, the policy
might specify that the agent chooses “move right” as
the action. A trading bot that observes three price
increases in a row might decide, according to its
policy, to short the market.

Episode
An episode is a set of steps from the initial state
of the environment until success is achieved or
failure is observed. In a game, from the start of
the game until a win or loss. In the financial
world, for example, from the beginning of the year
to the end of the year or to bankruptcy.

Reinforcement Learning
—Q-Learning

Reward Function
The reward function R assigns to each state-action
(S, A) pair a numerical reward.

Action Policy
An action policy Q assigns to each state S and
allowed action A a numerical value. The numerical
value is composed of the immediate reward of taking
action A and the discounted delayed reward — given
an optimal action taken in the subsequent state.

R : S × A → ℝ

Q : S × A → ℝ,

Q (St, At) = R (St, At) + γ ⋅ max
a

Q (St+1, a)

Representation
In general, the optimal action policy Q can not be
specified in closed form (e.g. in the form of a
table). Therefore, Q-learning relies in general on
approximate representations for the optimal policy
Q.

Neural Network
Due to the approximation capabilities of neural
networks (“Universal Approximation Theorems”),
neural networks are typically used to represent
optimal action policies Q. Features are the
parameters that describe the state of the
environment. Labels are values attached to each
allowed action.

“In the mathematical theory
of artificial neural networks,
the universal approximation
theorem states that a feed-
forward network with a single hidden
layer containing a finite number
of neurons can approximate continuous
functions on compact subsets of Rn,
under mild assumptions on the activation
function. The theorem thus states that
simple neural networks can represent a
wide variety of interesting functions
when given appropriate parameters;
however, it does not touch upon the
algorithmic learnability of those
parameters.”
—https://en.wikipedia.org/wiki/
Universal_approximation_theorem

http://math.uchicago.edu/~may/REU2018/REUPapers/Guilhoto.pdf

Exploration
This refers to actions taken by an agent that are
random in nature. The purpose is to explore random
actions and their associated values beyond what the
current optimal policy would dictate.

Exploitation
This refers to actions taken in accordance with the
current optimal policy.

Replay
This refers to the (regular) updating of the optimal
action policy given past and memorized experiences
(by re-training the neural network).

gamma
The parameter gamma represents the discount factor
by which delayed rewards are taken into account.

epsilon
The parameter epsilon defines the ratio with which
the algorithm relies on exploration as compared to
exploitation.

epsilon_decay
The parameter epsilon_decay specifies the rate at
which epsilon is reduced.

The Python Quants GmbH
Dr. Yves J. Hilpisch

http://cpf.tpq.io | training@tpq.io
@dyjh | YouTube

http://cpf.tpq.io
mailto:training@tpq.io
http://twitter.com/dyjh
https://youtube.com/@dyjh

