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Python in Finance

Python in Hedge Funds



Python for Algorithmic Trading

Python for Computational Finance



Financial Theory with Python — A Gentle Introduction

http://books.tpq.io
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Python for Finance

http://books.tpq.io
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http://books.tpq.io

Quant Finance with Python

http://books.tpq.io


Python & AI for Finance & Trading

http://books.tpq.io
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http://hilpisch.com

TL;DR: Yves — The Python Quant 

Dr. Yves J. Hilpisch is founder and CEO of The Python Quants (http://tpq.io), the company behind 
the Certificate in Python for Finance (CPF) Program (https://cpf.tpq.io). He is also the founder 
and CEO of The AI Machine (http://aimachine.io), a company focused on AI-powered algorithmic 
trading. 

Yves has a Diploma in Business Administration, a Ph.D. in Mathematical Finance, and is Adjunct 
Professor for Computational Finance. 

Yves is the author of six books (https://books.tpq.io): 

* Financial Theory with Python (2021, O’Reilly) 
* Artificial Intelligence in Finance (2020, O’Reilly) 
* Python for Algorithmic Trading (2020, O’Reilly) 
* Python for Finance (2018, 2nd ed., O’Reilly) 
* Listed Volatility and Variance Derivatives (2017, Wiley Finance) 
* Derivatives Analytics with Python (2015, Wiley Finance) 

Yves is the director of the CPF Program. He also lectures on computational finance, machine 
learning, and algorithmic trading at the CQF Program (http://cqf.com). 

Yves is the originator of the financial analytics library DX Analytics (http://dx-analytics.com) 
and organizes Meetup group events, conferences, and bootcamps about Python, artificial 
intelligence and algorithmic trading in London (http://pqf.tpq.io) and New York (http://
aifat.tpq.io). He has given keynote speeches at technology conferences in the United States, 
Europe, and Asia.

http://hilpisch.com
http://tpq.io
https://cpf.tpq.io
http://aimachine.io
https://books.tpq.io
http://cqf.com
http://dx-analytics.com
http://pqf.tpq.io
http://aifat.tpq.io
http://aifat.tpq.io


Agenda



DAY 1 
• AI Wars | State of the Art 
• Quantitative Finance with ChatGPT 

• Discovering Research 
• Generating Quizzes 
• Coding Quant Finance Models 
• Financial Data Science 

• Group Discussion 
• Benefits of LLMs 
• Problems from LLMs 

• Overview of ML/DL/RL/NLP/LLM 
• Simple Financial Examples 

• Stocks Clustering 
• Stock Return Prediction 

• ML Exercise (scikit-learn) 
• Advanced Financial Examples 

• Options Pricing 
• Credit Score Prediction 

• Financial Data APIs 
• Historical Price Data 
• Historical Fundamental Data 
• Other Financial Data

DAY 2 
• Generating Financial Data 

• Noisy Data (Historical Data + 
Noise) 

• Simulated Data (Vasicek Model) 
• Generated Data (GANs) 

• Advanced Financial Example 
• Reinforcement Learning for 
Delta Hedging 

• Basics of Natural Language 
Processing 
• Processing Text with Python 
• Using nltk, tokenization, 
summarization 

• NLP Exercise (nltk) 
• Basics of Large Language Models 

• transformers, self-attention 
• positional encoding, tokens, 
embeddings 

• GPT API usage with own texts 
• Review and Discussion 



DISCLAIMER 

This workshop is not only in part about ChatGPT and other LLMs. 

Parts of the content itself have been created with the help of 
tools like ChatGPT or Perplexity.ai. Content from such tools and 
models might have been used verbatim or in adjusted form (without 
any detailed attribution). 

[Personal Note: GPT seems to have been trained on basically all my 
publicly available content without any attribution provided for 
answers based on that content.] 

All financial examples represent technical illustrations only and 
do not represent financial or investment advice. 

The code comes without representations or warranties, to the extent 
permitted by applicable law.



AI Wars 
State of the Art



“Generative AI’s impact on productivity could add 
trillions of dollars in value to the global economy. 
Our latest research estimates that generative AI 
could add the equivalent of $2.6 trillion to $4.4 
trillion annually across the 63 use cases we 
analyzed — by comparison, the United Kingdom’s 
entire GDP in 2021 was $3.1 trillion.” McKinsey 
(2023): The economic potential of generative AI.



Dan Wang, a professor at Columbia 
Business School, says today’s AI courses 
must address the technology’s limits and 
opportunities. “The goal actually is not 
to advocate for or promote the use of AI 
tools, but rather for students to see, 
experience and understand the benefits, 
but importantly [also] the constraints,” 
Wang says. … 

AI also will factor into how businesses 
are structured and how they operate. 
Organizationally, it will grow to become 
a part of everyday communication, from 
email, memos, reports and marketing copy 
to product development through design, 
software engineering and other 
processes. Understanding this, too, will 
be as essential for future executives as 
mastering public speaking and 
learning how to lead a team.

https://www.bloomberg.com/news/articles/2023-10-19/business-schools-are-grappling-with-how-to-teach-artificial-intelligence


Quantitative Finance with 
ChatGPT 
- Discovering Research 
- Generating Quizzes 
- Coding Quant Finance Models 
- Financial Data Science



Group Discussion 
- Benefits of LLMs 
- Problems of LLMs



Statistical & Machine 
Learning



Mathematics. 
Function generates 
data.

f(x) = 2 +
1
2

x

α, β = ?, ?

Statistics. 
Data generates 
function. ̂f(x) = α + βx ≈ y

yi = f(xi), i = 1,2,…, n

(yi, xi)n
i=1
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Programming.

Machine Learning.

Rules | Code

Data

Output

Input

Output

Rules | Code



Types of Learning



Unsupervised learning (UL) 
These are algorithms that learn from a given sample 
data set of features (input) values only. They are 
supposed to learn about the input data set, given, 
for example, some guiding parameters. Clustering 
algorithms fall into that category. In a financial 
context, such algorithms might cluster stocks into 
certain groups.





Supervised learning (SL) 
These are algorithms that learn from a given sample 
data set of features (input) and labels (output) 
values. Examples are OLS regression and neural 
networks. The purpose of supervised learning is to 
learn the relationship between the input and output 
values. In finance, such algorithms might be trained 
to predict whether a potential debtor is credit-
worthy or not.





Reinforcement learning (RL) 
These are algorithms that learn from trial and error 
by receiving a reward for taking an action. They 
update an optimal action policy according to what 
rewards and punishments they receive. Such 
algorithms are, for example, used for environments 
where actions need to be taken continuously and 
rewards are received immediately, such as in a 
computer game.



Input 
(Action)

Output 
(Reward)

Input 
(Action)

Output 
(Reward)

Policy 
Update

https://certificate.tpq.io/lunar_lander.mp4
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Simple Financial Examples 
- Stock Clustering 
- Stock Price Prediction



ML Exercise (scikit-learn) 
- Efficient Markets 
- Stock Price Prediction … 
- … for a Random Walk 
- … for a Financial Time Series



Advanced Financial Examples 
- Option Pricing with DNNs 
- Credit Scoring with DNNs



Financial Data APIs 
—“What has been.”
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Generating Data 
—“What could have been.”





RL for Delta Hedging



“Goldman Sachs Group Inc. is expanding its use of 
a technology that leverages artificial 
intelligence in the hopes that it will make it 
easier for clients to plan complex derivatives 
trades. 

After already using the software to shake up the 
worlds of equities and foreign exchange options, 
the firm in recent weeks began allowing clients to 
use its visual structuring product for credit 
derivatives. It’s aiming to offer the service for 
rates trading in the first half of next year, 
Chris Churchman, who runs Goldman’s digital 
trading platform Marquee, said in an interview. 

The product, which Goldman began offering last 
year, helps institutional clients with price 
discovery and trading ideas. It also assesses the 
risks of a given trade and can gauge the chances 
that the trade will pay off.” 

Source: “Money Stuff” Newsletter by Matt Levine 
from 25. October 2023 

https://www.bloomberg.com/account/newsletters/money-stuff




Natural Language Processing



• Tokenization: 
• Splitting text into words, sentences, or other units. 
• Common libraries: NLTK, spaCy. 

• Part-of-Speech Tagging: 
• Assigning grammatical categories (e.g., noun, verb) to tokens. 
• Common libraries: NLTK, spaCy. 

• Named Entity Recognition (NER): 
• Identifying and classifying named entities (e.g., person names, 
organizations) in text. 

• Common libraries: spaCy, StanfordNLP. 
• Stemming and Lemmatization: 

• Reducing words to their base or root form. 
• Stemming: Truncating words (e.g., "running" to "run"). 
• Lemmatization: Transforming words to their dictionary form (e.g., 
"went" to "go"). 

• Common libraries: NLTK, spaCy. 

Here's a concise bullet-point summary of major techniques used in 
Natural Language Processing (NLP) with Python:



• Stopword Removal: 
• Removing common words (e.g., "and", "the") that may not add 
significant meaning in analysis. 

• Common libraries: NLTK, spaCy. 
• Word Embeddings: 

• Representing words as dense vectors capturing semantic meaning. 
• Techniques: Word2Vec, GloVe, FastText. 
• Common libraries: Gensim, spaCy. 

• Topic Modeling: 
• Discovering topics in large volumes of text. 
• Techniques: Latent Dirichlet Allocation (LDA), Non-Negative Matrix 
Factorization (NMF). 

• Common libraries: Gensim, scikit-learn. 
• Sentiment Analysis: 

• Determining the sentiment or emotion expressed in text. 
• Common libraries: TextBlob, VADER, spaCy. 

• Syntax Parsing: 
• Analyzing the grammatical structure of sentences. 
• Common libraries: spaCy, StanfordNLP. 



• Machine Translation: 
• Translating text from one language to another. 
• Common libraries: OpenNMT, T2T (Tensor2Tensor). 

• Seq2Seq Models: 
• Using recurrent neural networks (RNNs) for tasks like machine 
translation and text summarization. 

• Common libraries: TensorFlow, PyTorch. 
• Attention Mechanisms and Transformers: 

• Advanced model architectures for handling long-range dependencies in 
text. 

• Techniques: BERT, GPT, T5. 
• Common libraries: HuggingFace's Transformers. 

• Text Classification: 
• Categorizing text into predefined categories or labels. 
• Common libraries: scikit-learn, TensorFlow, PyTorch. 

• Regular Expressions: 
• Pattern matching and text extraction. 
• Common library: re module in Python. 

• Dependency Parsing: 
• Analyzing the grammatical relationships between words in a sentence. 
• Common libraries: spaCy, StanfordNLP.



Large Language Models



https://certificate.tpq.io/attention_is_all_you_need.pdf
https://certificate.tpq.io/gpt3_nature_scopre_limits.pdf


• Transformers Architecture: 
• Introduced in the "Attention Is All You Need" paper. 
• Consists of encoder and decoder stacks (though LLMs like GPT only 
use the decoder stack). 

• Attention Mechanisms: 
• Scaled Dot-Product Attention: Computes attention scores based on the 
dot product of query and key vectors. 

• Multi-Head Attention: Parallel attention layers that capture 
different types of information. 

• Positional Encoding: 
• Since transformers don't have a built-in notion of sequence order, 
positional encodings are added to embeddings to provide positional 
information.

Large Language Models (LLMs) like OpenAI's GPT (Generative Pre-trained 
Transformer) series, BERT (Bidirectional Encoder Representations from 
Transformers), and others have revolutionized the field of NLP. Here's 
a concise bullet-point summary of the major techniques and components 
of LLMs:



• Embedding Layers: 
• Convert input tokens into continuous vectors. 
• Often initialized with pre-trained embeddings like Word2Vec or 
GloVe, though they can be trained from scratch. 

• Layer Normalization: 
• Normalizes the activations of each feature within a layer. 
• Helps stabilize and accelerate training. 

• Feed-Forward Neural Networks: 
• Present in each transformer block. 
• Consists of two linear transformations with a ReLU activation in 
between. 

• Residual Connections: 
• Helps in preventing the vanishing gradient problem. 
• Allows deeper models by adding the original input to the output of 
each sub-layer. 

• Masking: 
• Padding Mask: Ensures the model doesn't attend to padding tokens. 
• Look-ahead Mask: Used in decoders to ensure that a position doesn't 
attend to future positions.



• Pre-training and Fine-tuning: 
• LLMs are often pre-trained on large corpora to learn language 
representations and then fine-tuned on specific tasks. 

• Bidirectional Context: 
• Models like BERT are trained to consider both left and right 
context, making them deeply bidirectional. 

• Adaptive Learning Rates: 
• Techniques like Adam optimizer are commonly used with learning rate 
warm-up and decay. 

• Regularization Techniques: 
• Dropout: Used in various parts of the model, including attention 
weights. 

• Layer-wise Recurrent Mechanism: Some models use mechanisms where 
layers can pass information to the same layer in the next time step.



• Parameter Sharing: 
• In models like GPT, weights are shared between the token embedding 
layer and the final softmax layer. 

• Large-scale Training: 
• LLMs have hundreds of millions to billions of parameters. 
• Training requires distributed computing and advanced techniques to 
handle such large models. 

• Prompt Engineering and Few-shot Learning: 
• Techniques to guide LLMs in generating specific outputs or 
performing tasks with limited examples. 

• Knowledge Integration: 
• Some LLMs are trained with external knowledge bases or facts to 
enhance their knowledge. 

This list provides an overview of the major techniques and components 
of LLMs. The field is rapidly evolving, with new techniques and 
architectures emerging regularly.



APPENDIX: 
Dense Neural Networks



“A major source of difficulty in many 
real-world artificial intelligence 
applications is that many of the factors 
of variation influence every single piece 
of data we are able to observe.” 

“Deep learning solves this central 
problem in representation learning by 
introducing representations that are 
expressed in terms of other, simpler 
representations. Deep learning enables 
the computer to build complex concepts 
out of simpler concepts.” 

“The quintessential example of a deep 
learning model is the feedforward deep 
network, or multilayer perceptron (MLP). 
A multilayer perceptron is just a 
mathematical function mapping some set of 
input values to output values. The 
function is formed by composing many 
simpler functions. We can think of each 
application of a different mathematical 
function as providing a new 
representation of the input.”
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Recurrent Neural Networks
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Recurrent Neural Network (Deep) 
Remembering the Output/State

state_t = 0
for input_t in input_sequence:
    output_t = f(input_t, state_t)
    state_t = output_t

Source: Chollet (2017)



Long Short Term Memory (LSTM) 
Adding a Carry Track 

Source: Chollet (2017)



Convolutional Neural Networks



https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Overview of Neural Networks



https://www.asimovinstitute.org/neural-network-zoo/


https://www.asimovinstitute.org/neural-network-zoo/


APPENDIX: 
Reinforcement Learning



“Of all the forms of machine learning, 
reinforcement learning is the closest 
to the kind of learning that humans 
and other animals do, and many of the 
core algorithms of reinforcement 
learning were originally inspired by 
biological learning systems.” 

“The most important feature 
distinguishing reinforcement learning 
from other types of learning is that 
it uses training information that 
evaluates the actions taken rather 
than instructs by giving correct 
actions.” 

“Reinforcement learning is about 
learning from interaction how to 
behave in order to achieve a goal. The 
reinforcement learning agent and its 
environment interact over a sequence 
of discrete time steps.”

https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262039249/




Environment 
The environment defines the problem at hand. This 
can be a computer game to be played or a financial 
market to be traded in. 

State 
A state subsumes all relevant parameters that 
describe the current status of the environment. In a 
computer game this might be the whole screen with 
all its pixels. In a financial market, this might 
include current and historical price levels, 
financial indicators such as moving averages, 
macroeconomic variables, and so on.



Agent 
The term agent subsumes all elements of the RL 
algorithm that interacts with the environment and 
that learns from these interactions. In a gaming 
context, the agent might represent a player playing 
the game. In a financial context, the agent could 
represent a trader placing bets on rising or falling 
markets. 

Action 
An agent can choose one action from a (limited) set 
of allowed actions. In a computer game, movements to 
the left or right might be allowed actions, while in 
a financial market going long or short could be 
admissible.



Step 
Given an action of an agent, the state of the 
environment is updated. One such update is generally 
called a step. The concept of a step is general 
enough to encompass both heterogeneous and 
homogeneous time intervals between two steps. While 
in computer games, real-time interaction with the 
game environment is simulated by rather short, 
homogeneous time intervals (“game clock”), a trading 
bot interacting with a financial market environment 
could take actions at longer, heterogeneous time 
intervals, for instance.



Reward 
Depending on the action an agent chooses, 
a reward (or penalty) is awarded. For a computer 
game, points are a typical reward. In a financial 
context, profit (or loss) is a standard reward. 

Target 
The target specifies what the agent tries to 
maximize. In a computer game, this in general is the 
score reached by the agent. For a financial trading 
bot, this might be the trading profit.



Policy 
The policy defines which action an agent takes given 
a certain state of the environment. Given a certain 
state of a computer game, represented by all the 
pixels that make up the current scene, the policy 
might specify that the agent chooses “move right” as 
the action. A trading bot that observes three price 
increases in a row might decide, according to its 
policy, to short the market. 

Episode 
An episode is a set of steps from the initial state 
of the environment until success is achieved or 
failure is observed. In a game, from the start of 
the game until a win or loss. In the financial 
world, for example, from the beginning of the year 
to the end of the year or to bankruptcy. 



Reinforcement Learning 
—Q-Learning



Reward Function 
The reward function R assigns to each state-action 
(S, A) pair a numerical reward. 

Action Policy 
An action policy Q assigns to each state S and 
allowed action A a numerical value. The numerical 
value is composed of the immediate reward of taking 
action A and the discounted delayed reward — given 
an optimal action taken in the subsequent state.

R : S × A → ℝ

Q : S × A → ℝ,

Q (St, At) = R (St, At) + γ ⋅ max
a

Q (St+1, a)



Representation 
In general, the optimal action policy Q can not be 
specified in closed form (e.g. in the form of a 
table). Therefore, Q-learning relies in general on 
approximate representations for the optimal policy 
Q.  

Neural Network 
Due to the approximation capabilities of neural 
networks (“Universal Approximation Theorems”), 
neural networks are typically used to represent 
optimal action policies Q. Features are the 
parameters that describe the state of the 
environment. Labels are values attached to each 
allowed action.



“In the mathematical theory 
of artificial neural networks, 
the universal approximation 
theorem states that a feed-
forward network with a single hidden 
layer containing a finite number 
of neurons can approximate continuous 
functions on compact subsets of Rn, 
under mild assumptions on the activation 
function. The theorem thus states that 
simple neural networks can represent a 
wide variety of interesting functions 
when given appropriate parameters; 
however, it does not touch upon the 
algorithmic learnability of those 
parameters.” 
—https://en.wikipedia.org/wiki/
Universal_approximation_theorem

http://math.uchicago.edu/~may/REU2018/REUPapers/Guilhoto.pdf


Exploration 
This refers to actions taken by an agent that are 
random in nature. The purpose is to explore random 
actions and their associated values beyond what the 
current optimal policy would dictate. 

Exploitation 
This refers to actions taken in accordance with the 
current optimal policy. 

Replay 
This refers to the (regular) updating of the optimal 
action policy given past and memorized experiences 
(by re-training the neural network).



gamma
The parameter gamma represents the discount factor 
by which delayed rewards are taken into account. 

epsilon
The parameter epsilon defines the ratio with which 
the algorithm relies on exploration as compared to 
exploitation. 

epsilon_decay
The parameter  epsilon_decay specifies the rate at 
which epsilon is reduced.



The Python Quants GmbH 
Dr. Yves J. Hilpisch 

http://cpf.tpq.io | training@tpq.io 
@dyjh | YouTube

http://cpf.tpq.io
mailto:training@tpq.io
http://twitter.com/dyjh
https://youtube.com/@dyjh

