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Case Study: Asset Allocation



PORTFOLIO SELECTION*

HARRY MARKOWITZ
The Rand Corporation

THE PROCESS OF SELECTING a portfolio may be divided into two stages.
The first stage starts with observation and experience and ends with
beliefs about the future performances of available securities. The
second stage starts with the relevant beliefs about future performances
and ends with the choice of portfolio. This paper is concerned with the
second stage. We first consider the rule that the investor does (or should)
maximize discounted expected, or anticipated, returns. This rule is re-
jected both as a hypothesis to explain, and as a maximum to guide in-
vestment behavior. We next consider the rule that the investor does (or
should) consider expected return a desirable thing and variance of re-
turn an undesirable thing. This rule has many sound points, both as a
maxim for, and hypothesis about, investment behavior. We illustrate
geometrically relations between beliefs and choice of portfolio accord-
ing to the “‘expected returns—variance of returns” rule.

One type of rule concerning choice of portfolio is that the investor
does (or should) maximize the discounted (or capitalized) value of
future returns.! Since the future is not known with certainty, it must
be “expected” or ‘“‘anticipated’ returns which we discount. Variations
of this type of rule can be suggested. Following Hicks, we could let
“anticipated” returns include an allowance for risk.? Or, we could let
the rate at which we capitalize the returns from particular securities
vary with risk.

The hypothesis (or maxim) that the investor does (or should)
maximize discounted return must be rejected. If we ignore market im-
perfections the foregoing rule never implies that there is a diversified
portfolio which is preferable to all non-diversified portfolios. Diversi-
fication is both observed and sensible; a rule of behavior which does
not imply the superiority of diversification must be rejected both as a
hypothesis and as a maxim.

* This paper is based on work done by the author while at the Cowles Commission for

Research in Economics and with the financial assistance of the Social Science Research
Council. It will be reprinted as Cowles Commission Paper, New Series, No. 60.

1. See, for example, J. B. Williams, The Theory of Investment Value (Cambridge, Mass.:
Harvard University Press, 1938), pp. 55-75.

2. J. R. Hicks, Value and Capital (New York: Oxford University Press, 1939), p. 126.
Hicks applies the rule to a firm rather than a portfolio.
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For fixed probability beliefs (u:, o;;) the investor has a choice of vari-
ous combinations of £ and V depending on his choice of portfolio
Xi, ..., Xy. Suppose that the set of all obtainable (£, V) combina-
tions were as in Figure 1. The E-V rule states that the investor would
(or should) want to select one of those portfolios which give rise to the
(E, V) combinations indicated as efficient in the figure; i.e., those with
minimum V for given E or more and maximum E for given V or less.

There are techniques by which we can compute the set of efficient
portfolios and efficient (£, V) combinations associated with given u;

v

attainable
E,V combinations

officient
= E,V combinations

Fic. 1

and ¢;;. We will not present these techniques here. We will, however,
illustrate geometrically the nature of the efficient surfaces for cases
in which NV (the number of available securities) is small.

The calculation of efficient surfaces might possibly be of practical
use. Perhaps there are ways, by combining statistical techniques and
the judgment of experts, to form reasonable probability beliefs (u;,
0:;). We could use these beliefs to compute the attainable efficient
combinations of (£, V). The investor, being informed of what (E, V)
combinations were attainable, could state which he desired. We could
then find the portfolio which gave this desired combination.
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Two conditions—at least—must be satisfied before it would be prac-
tical to use efficient surfaces in the manner described above. First, the
investor must desire to act according to the E-V maxim. Second, we
must be able to arrive at reasonable u; and o;;. We will return to these
matters later.

Let us consider the case of three securities. In the three security case
our model reduces to

1) E=ixi#i

2)

3)

4)

From (3) we get
3) X;=1-X,— X,

If we substitute (3’) in equation (1) and (2) we get E and V as functions
of X; and X,. For example we find

1’) E=p3+ X1 (p1—p3) + X (k2 — ps)

The exact formulas are not too important here (that of V is given be-
low).® We can simply write
@) E =E(X) X»)

b) V =V (X X2)
C) X1>0, Xz?(), 1—‘X1—X2>O

By using relations (a), (b), (c), we can work with two dimensional
geometry.

The attainable set of portfolios consists of all portfolios which
satisfy constraints (¢) and (3’) (or equivalently (3) and (4)). The at-
tainable combinations of X1, X, are represented by the triangle abc in
Figure 2. Any point to the left of the X, axis is not attainable because
it violates the condition that X; > 0. Any point below the X; axis is
not attainable because it violates the condition that X, 2> 0. Any

8. V = Xi(on — 2013 + 033) + Xi(om — 2023 + 033) + 2X1Xo(012 — 013 — 023 + o3)
+ 2X: (013 — 033) + 2X3(023 — 033) + 023




Primitives

financial assets n=12....N
points 1n time [=1,b,..., 1y
historical returns 't =1y, ..., 1y
1 n
mean returns Hn = IV; It

expected returns U = (//tl,//tz, ...,,uN)T



Primitives

|
variance Var, = MZ;‘ (”tn —ﬂn) (”tn —ﬂn)

volatility (std) o =4/ Var,

1 | .
covariance Cov;; = IV 2 (’”tl » ﬂi) (’”}r] - /"j)
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covariance matrix ¥ e RVXN



Portfolio Statistics

weights O = (¢;,....,p0)" € RY
portfolio return Hp = Qu
portfolio variance Varp = ¢'2¢

portfolio volatility o, =4/Varp



Case Study: Risk Parity
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welghts

risk measure

risk contribution

Euler decomposition

Marginal Risk Contributions
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Marginal Volatilities

portfolio volatility o(P) = Y, Y,

inal volatiliti 0P _ 2
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DISCLAIMER

ALl the content, Python code, Jupyter Notebooks, and other
materials (the “Material”) come without warranties or
representations, to the extent permitted by applicable law.

None of the Material represents any kind of recommendation or
investment advice.

The Material 1s only meant as a technical illustration.

Leveraged and unleveraged trading of financial instruments, and of
contracts for difference (CFDs) 1in particular, involves a number
of risks (for example, losses 1n excess of deposits). Make sure to
understand and manage these risks.
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