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Deep Neural Networks 

Optimization
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1) Dynamic Programming





A Finite Horizon (Markovian) Dynamic Programming 
Problem (FHDP) is defined by a tuple

{S, A, T, (rt, ft, Φt)T
t=0}

where 

1. S is the state space of the problem, with generic 
element s. 

2. A is the action space of the problem, with generic 
element a. 

3. T, a positive integer, is the horizon of the 
problem. 

4. For each 
A. 		 	 	 	 	 is the period-t reward function 
B. 		 	 	 	 	 is the period-t transition function 
C. 		 	 	 	 	 is the period-t feasible action 		  

		 	 	 	 	 correspondence

t ∈ {0,1,…, T}
rt : S × A → ℝ

Φt : S → P(A)
ft : S × A → S

See Sundaram (1996, pp. 268-269).



The objective is to choose a plan for taking 
actions at each point in time in order to maximize 
the sum of the per-period rewards over the horizon 
of the model, i.e. to solve

T

∑
t=1

rt(st, at)

s0 = s ∈ S

st = ft−1(st−1, at−1), t = 1,…, T

at ∈ Φt(st), t = 1,…, T

Maximize

subject to

See Sundaram (1996, pp. 268-269).



2) Basic Notions



“Of all the forms of machine learning, 
reinforcement learning is the closest 
to the kind of learning that humans 
and other animals do, and many of the 
core algorithms of reinforcement 
learning were originally inspired by 
biological learning systems.” 

“The most important feature 
distinguishing reinforcement learning 
from other types of learning is that 
it uses training information that 
evaluates the actions taken rather 
than instructs by giving correct 
actions.” 

“Reinforcement learning is about 
learning from interaction how to 
behave in order to achieve a goal. The 
reinforcement learning agent and its 
environment interact over a sequence 
of discrete time steps.”

https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262039249/




Environment 
The environment defines the problem at hand. This 
can be a computer game to be played or a financial 
market to be traded in. 

State 
A state subsumes all relevant parameters that 
describe the current status of the environment. In a 
computer game this might be the whole screen with 
all its pixels. In a financial market, this might 
include current and historical price levels, 
financial indicators such as moving averages, 
macroeconomic variables, and so on.



Agent 
The term agent subsumes all elements of the RL 
algorithm that interacts with the environment and 
that learns from these interactions. In a gaming 
context, the agent might represent a player playing 
the game. In a financial context, the agent could 
represent a trader placing bets on rising or falling 
markets. 

Action 
An agent can choose one action from a (limited) set 
of allowed actions. In a computer game, movements to 
the left or right might be allowed actions, while in 
a financial market going long or short could be 
admissible.



Step 
Given an action of an agent, the state of the 
environment is updated. One such update is generally 
called a step. The concept of a step is general 
enough to encompass both heterogeneous and 
homogeneous time intervals between two steps. While 
in computer games, real-time interaction with the 
game environment is simulated by rather short, 
homogeneous time intervals (“game clock”), a trading 
bot interacting with a financial market environment 
could take actions at longer, heterogeneous time 
intervals, for instance.



Reward 
Depending on the action an agent chooses, 
a reward (or penalty) is awarded. For a computer 
game, points are a typical reward. In a financial 
context, profit (or loss) is a standard reward. 

Target 
The target specifies what the agent tries to 
maximize. In a computer game, this in general is the 
score reached by the agent. For a financial trading 
bot, this might be the trading profit.



Policy 
The policy defines which action an agent takes given 
a certain state of the environment. Given a certain 
state of a computer game, represented by all the 
pixels that make up the current scene, the policy 
might specify that the agent chooses “move right” as 
the action. A trading bot that observes three price 
increases in a row might decide, according to its 
policy, to short the market. 

Episode 
An episode is a set of steps from the initial state 
of the environment until success is achieved or 
failure is observed. In a game, from the start of 
the game until a win or loss. In the financial 
world, for example, from the beginning of the year 
to the end of the year or to bankruptcy. 



3) Deep Q-Learning



Reward Function 
The reward function R assigns to each state-action 
(S, A) pair a numerical reward. 

Action Policy 
An action policy Q assigns to each state S and 
allowed action A a numerical value. The numerical 
value is composed of the immediate reward of taking 
action A and the discounted delayed reward — given 
an optimal action taken in the subsequent state.

R : S × A → ℝ

Q : S × A → ℝ,

Q (St, At) = R (St, At) + γ ⋅ max
a

Q (St+1, a)



Representation 
In general, the optimal action policy Q can not be 
specified in closed form (e.g. in the form of a 
table). Therefore, Q-learning relies in general on 
approximate representations for the optimal policy 
Q.  

Neural Network 
Due to the approximation capabilities of neural 
networks (“Universal Approximation Theorems”), 
neural networks are typically used to represent 
optimal action policies Q. Features are the 
parameters that describe the state of the 
environment. Labels are values attached to each 
allowed action.



“In the mathematical theory of artificial 
neural networks, the universal 
approximation theorem states that a feed-
forward network with a single hidden 
layer containing a finite number 
of neurons can approximate continuous 
functions on compact subsets of Rn, under 
mild assumptions on the activation 
function. The theorem thus states that 
simple neural networks can represent a 
wide variety of interesting functions 
when given appropriate parameters; 
however, it does not touch upon the 
algorithmic learnability of those 
parameters.” 
—https://en.wikipedia.org/wiki/
Universal_approximation_theorem

http://math.uchicago.edu/~may/REU2018/REUPapers/Guilhoto.pdf


Exploration 
This refers to actions taken by an agent that are 
random in nature. The purpose is to explore random 
actions and their associated values beyond what the 
current optimal policy would dictate. 

Exploitation 
This refers to actions taken in accordance with the 
current optimal policy. 

Replay 
This refers to the (regular) updating of the optimal 
action policy given past and memorized experiences 
(by re-training the neural network).



gamma
The parameter gamma represents the discount factor 
by which delayed rewards are taken into account. 

epsilon
The parameter epsilon defines the ratio with which 
the algorithm relies on exploration as compared to 
exploitation. 

epsilon_decay
The parameter  epsilon_decay specifies the rate at 
which epsilon is reduced.
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