
Reinforcement Learning
for Finance

Dr. Yves J. Hilpisch
ODSC, London, September 2024

Introduction

http://books.tpq.io

Python and AI for Finance
Since 2014 publishing about Python & AI for Quant Finance.

http://finpy.pqp.io
http://books.tpq.io

https://cpf.tpq.io

4-12 months
program

(live or self-paced)

7 Books
→ 2,750 pages

PDF

330 hours
of instruction

→ 2,000,000 words

350 PY Files
→ 35,000+ LOC

500 Jupyter
Notebooks
→ 50,000 LOC

https://cpf.tpq.io

https://bit.ly/quants_dev

Community of
professional & aspiring

quant developers &
quant researchers.

1,000+ Members
and growing.

Webinar series
“Reinforcement Learning

in Finance”

http://pqf.tpq.io
https://discord.gg/uJPtp9Awaj

http://pqf.tpq.io
https://www.meetup.com/Artificial-Intelligence-in-Finance-Algorithmic-Trading/
https://pqf.tpq.io

http://hilpisch.com

Dr. Yves J. Hilpisch is the founder and CEO of The Python Quants (http://tpq.io), a group focusing on
the use of Python and open source technologies for financial data science, artificial intelligence,
algorithmic trading, and computational finance. He is also the founder and CEO of The AI Machine
(http://aimachine.io), a company focused on AI-powered algorithmic trading based on a proprietary
strategy execution platform.

Yves has a Diploma in Business Administration, a Ph.D. in Mathematical Finance, and is Adjunct Professor
for Computational Finance.

Yves is the author of six books (https://home.tpq.io/books):

* Reinforcement Learning for Finance (2024, O’Reilly)
* Finance with Python (2021, O’Reilly)
* Artificial Intelligence in Finance (2020, O’Reilly)
* Python for Algorithmic Trading (2020, O’Reilly)
* Python for Finance (2018, 2nd ed., O’Reilly)
* Listed Volatility and Variance Derivatives (2017, Wiley Finance)
* Derivatives Analytics with Python (2015, Wiley Finance)

Yves is the director of the online training program leading to the Certificates in Python for Finance
(https://cpf.tpq.io). He also lectures on computational finance, reinforcement learning, and algorithmic
trading at the CQF Program (http://cqf.com).

Yves is the originator of the financial analytics library DX Analytics (http://dx-analytics.com) and
organizes Meetup group events, conferences, and bootcamps about Python, artificial intelligence and
algorithmic trading in London (http://pqf.tpq.io) and New York (http://aifat.tpq.io). He has given
keynote speeches at technology conferences in the United States, Europe, and Asia.

http://hilpisch.com
http://tpq.io
http://aimachine.io
https://home.tpq.io/books
http://cqf.com
http://dx-analytics.com
http://pqf.tpq.io
http://aifat.tpq.io

Overview

http://books.tpq.io

RL for Finance
A Python-based introduction with different applications.

http://books.tpq.io

Applications
Algorithmic Trading

Dynamic Hedging
Dynamic Asset Allocation

Optimal Execution

Data Augmentation
Simulated Data
Generated Data

The Basics
Learning through Interaction

Deep Q-Learning
Financial Q-Learning

Auxiliary Topics
Deep Neural Networks

Optimization

Reinforcement Learning for Finance

Reinforcement Learning

https://bit.ly/odsc_ldn_2024

1) Dynamic Programming

A Finite Horizon (Markovian) Dynamic Programming
Problem (FHDP) is defined by a tuple

{S, A, T, (rt, ft, Φt)T
t=0}

where

1. S is the state space of the problem, with generic
element s.

2. A is the action space of the problem, with generic
element a.

3. T, a positive integer, is the horizon of the
problem.

4. For each
A. 		 	 	 	 	 is the period-t reward function
B. 		 	 	 	 	 is the period-t transition function
C. 		 	 	 	 	 is the period-t feasible action 		

		 	 	 	 	 correspondence

t ∈ {0,1,…, T}
rt : S × A → ℝ

Φt : S → P(A)
ft : S × A → S

See Sundaram (1996, pp. 268-269).

The objective is to choose a plan for taking
actions at each point in time in order to maximize
the sum of the per-period rewards over the horizon
of the model, i.e. to solve

T

∑
t=1

rt(st, at)

s0 = s ∈ S

st = ft−1(st−1, at−1), t = 1,…, T

at ∈ Φt(st), t = 1,…, T

Maximize

subject to

See Sundaram (1996, pp. 268-269).

2) Basic Notions

“Of all the forms of machine learning,
reinforcement learning is the closest
to the kind of learning that humans
and other animals do, and many of the
core algorithms of reinforcement
learning were originally inspired by
biological learning systems.”

“The most important feature
distinguishing reinforcement learning
from other types of learning is that
it uses training information that
evaluates the actions taken rather
than instructs by giving correct
actions.”

“Reinforcement learning is about
learning from interaction how to
behave in order to achieve a goal. The
reinforcement learning agent and its
environment interact over a sequence
of discrete time steps.”

https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262039249/

Environment
The environment defines the problem at hand. This
can be a computer game to be played or a financial
market to be traded in.

State
A state subsumes all relevant parameters that
describe the current status of the environment. In a
computer game this might be the whole screen with
all its pixels. In a financial market, this might
include current and historical price levels,
financial indicators such as moving averages,
macroeconomic variables, and so on.

Agent
The term agent subsumes all elements of the RL
algorithm that interacts with the environment and
that learns from these interactions. In a gaming
context, the agent might represent a player playing
the game. In a financial context, the agent could
represent a trader placing bets on rising or falling
markets.

Action
An agent can choose one action from a (limited) set
of allowed actions. In a computer game, movements to
the left or right might be allowed actions, while in
a financial market going long or short could be
admissible.

Step
Given an action of an agent, the state of the
environment is updated. One such update is generally
called a step. The concept of a step is general
enough to encompass both heterogeneous and
homogeneous time intervals between two steps. While
in computer games, real-time interaction with the
game environment is simulated by rather short,
homogeneous time intervals (“game clock”), a trading
bot interacting with a financial market environment
could take actions at longer, heterogeneous time
intervals, for instance.

Reward
Depending on the action an agent chooses,
a reward (or penalty) is awarded. For a computer
game, points are a typical reward. In a financial
context, profit (or loss) is a standard reward.

Target
The target specifies what the agent tries to
maximize. In a computer game, this in general is the
score reached by the agent. For a financial trading
bot, this might be the trading profit.

Policy
The policy defines which action an agent takes given
a certain state of the environment. Given a certain
state of a computer game, represented by all the
pixels that make up the current scene, the policy
might specify that the agent chooses “move right” as
the action. A trading bot that observes three price
increases in a row might decide, according to its
policy, to short the market.

Episode
An episode is a set of steps from the initial state
of the environment until success is achieved or
failure is observed. In a game, from the start of
the game until a win or loss. In the financial
world, for example, from the beginning of the year
to the end of the year or to bankruptcy.

3) Deep Q-Learning

Reward Function
The reward function R assigns to each state-action
(S, A) pair a numerical reward.

Action Policy
An action policy Q assigns to each state S and
allowed action A a numerical value. The numerical
value is composed of the immediate reward of taking
action A and the discounted delayed reward — given
an optimal action taken in the subsequent state.

R : S × A → ℝ

Q : S × A → ℝ,

Q (St, At) = R (St, At) + γ ⋅ max
a

Q (St+1, a)

Representation
In general, the optimal action policy Q can not be
specified in closed form (e.g. in the form of a
table). Therefore, Q-learning relies in general on
approximate representations for the optimal policy
Q.

Neural Network
Due to the approximation capabilities of neural
networks (“Universal Approximation Theorems”),
neural networks are typically used to represent
optimal action policies Q. Features are the
parameters that describe the state of the
environment. Labels are values attached to each
allowed action.

“In the mathematical theory of artificial
neural networks, the universal
approximation theorem states that a feed-
forward network with a single hidden
layer containing a finite number
of neurons can approximate continuous
functions on compact subsets of Rn, under
mild assumptions on the activation
function. The theorem thus states that
simple neural networks can represent a
wide variety of interesting functions
when given appropriate parameters;
however, it does not touch upon the
algorithmic learnability of those
parameters.”
—https://en.wikipedia.org/wiki/
Universal_approximation_theorem

http://math.uchicago.edu/~may/REU2018/REUPapers/Guilhoto.pdf

Exploration
This refers to actions taken by an agent that are
random in nature. The purpose is to explore random
actions and their associated values beyond what the
current optimal policy would dictate.

Exploitation
This refers to actions taken in accordance with the
current optimal policy.

Replay
This refers to the (regular) updating of the optimal
action policy given past and memorized experiences
(by re-training the neural network).

gamma
The parameter gamma represents the discount factor
by which delayed rewards are taken into account.

epsilon
The parameter epsilon defines the ratio with which
the algorithm relies on exploration as compared to
exploitation.

epsilon_decay
The parameter epsilon_decay specifies the rate at
which epsilon is reduced.

The Python Quants GmbH
Dr. Yves J. Hilpisch

http://tpq.io | training@tpq.io
@dyjh

http://home.tpq.io
mailto:training@tpq.io
http://twitter.com/dyjh

